Search Results

Now showing 1 - 2 of 2
  • Item
    A local projection stabilization/continuous Galerkin-Petrov method for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Ahmed, Naveed; John, Volker; Matthies, Gunar; Novo, Julia
    The local projection stabilization (LPS) method in space is considered to approximate the evolutionary Oseen equations. Optimal error bounds independent of the viscosity parameter are obtained in the continuous-in-time case for the approximations of both velocity and pressure. In addition, the fully discrete case in combination with higher order continuous Galerkin-Petrov (cGP) methods is studied. Error estimates of order k + 1 are proved, where k denotes the polynomial degree in time, assuming that the convective term is time-independent. Numerical results show that the predicted order is also achieved in the general case of time-dependent convective terms.
  • Item
    Numerical studies of higher order variational time stepping schemes for evolutionary Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Ahmed, Naveed; Matthies, Gunar
    We present in this paper numerical studies of higher order variational time stepping schemes combined with finite element methods for simulations of the evolutionary Navier-Stokes equations. In particular, conforming inf-sup stable pairs of finite element spaces for approximating velocity and pressure are used as spatial discretization while continuous GalerkinPetrov methods (cGP) and discontinuous Galerkin (dG) methods are applied as higher order variational time discretizations. Numerical results for the well-known problem of incompressible flows around a circle will be presented.