Search Results

Now showing 1 - 2 of 2
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.
  • Item
    Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses
    (Cambridge : Cambridge Univ. Press, 2016) Mauclair, C.; Mermillod-Blondin, A.; Mishchik, K.; Bonse, J.; Rosenfeld, A.; Colombier, J.P.; Stoian, R.
    We discuss the dynamics of ultrashort pulsed laser excitation in bulk optical silica-based glasses (fused silica and borosilicate BK7) well-above the permanent modification threshold. We indicate subsequent structural and thermomechanical energy relaxation paths that translate into positive and negative refractive index changes, compression and rarefaction zones. If fast electronic decay occurs at low excitation levels in fused silica via self-trapping of excitons, for carrier densities in the vicinity of the critical value at the incident wavelength, persistent long-living absorptive states indicate the achievement of low viscosity matter states manifesting pressure relaxation, rarefaction, void opening and compaction in the neighboring domains. An intermediate ps-long excited carrier dynamics is observed for BK7 in the range corresponding to structural expansion and rarefaction. The amount of excitation and the strength of the subsequent hydrodynamic evolution is critically dependent on the pulse time envelope, indicative of potential optimization schemes.