Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance

2018, Kuttner, Christian, Mayer, Martin, Dulle, Martin, Moscoso, Ana, López-Romero, Juan Manuel, Förster, Stephan, Fery, Andreas, Pérez-Juste, Jorge, Contreras-Cáceres, Rafael

We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

Loading...
Thumbnail Image
Item

Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag-Au Nanosphere Chain Assemblies

2021, Schletz, Daniel, Schultz, Johannes, Potapov, Pavel L., Steiner, Anja Maria, Krehl, Jonas, König, Tobias A.F., Mayer, Martin, Lubk, Axel, Fery, Andreas

Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous Ag-Au nanoparticle chains are reported. Wrinkled templates are used for directed self-assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state-of-the-art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces

2016, Mayer, Martin, Tebbe, Moritz, Kuttner, Christian, Schnepf, Max J., König, Tobias A. F., Fery, Andreas

We demonstrate a template-assisted colloidal self-assembly approach for magnetic metasurfaces on macroscopic areas. The choice of anisotropic colloidal particle geometry, assembly pattern and metallic film is based on rational design criteria, taking advantage of mirror-charge effects for gold nanorods placed on gold film. Monodisperse gold nanorods prepared utilizing wet-chemistry are arranged with high precision on wrinkled templates to form linear array-type assemblies and subsequently transferred to a thin gold film. Due to the obtained particle-to-film distance of 1.1 nm, the plasmonic mode of the nanorod is able to couple efficiently with the supporting metallic film, giving rise to a magnetic mode in the visible spectrum (721 nm). Conventional UV-vis-NIR measurements in close correlation with electromagnetic simulations provide evidence for the presence of a magnetic resonance on the macroscopic area. The herein presented scalable lithography-free fabrication process paves the road towards colloidal functional metasurfaces with an optical response in the effective magnetic permeability.

Loading...
Thumbnail Image
Item

Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties

2016, Höller, Roland P. M., Dulle, Martin, Thomä, Sabrina, Mayer, Martin, Steiner, Anja Maria, Förster, Stephan, Fery, Andreas, Kuttner, Christian, Chanana, Munish

We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

Loading...
Thumbnail Image
Item

Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains

2019, Mayer, Martin, Potapov, Pavel L., Pohl, Darius, Steiner, Anja Maria, Schultz, Johannes, Rellinghaus, Bernd, Lubk, Axel, König, Tobias A.F., Fery, Andreas

Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm. © 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Nanorattles with tailored electric field enhancement

2017, Schnepf, Max J., Mayer, Martin, Kuttner, Christian, Tebbe, Moritz, Wolf, Daniel, Dulle, Martin, Altantzis, Thomas, Formanek, Petr, Förster, Stephan, Bals, Sara, König, Tobias A. F., Fery, Andreas

Nanorattles are metallic core-shell particles with core and shell separated by a dielectric spacer. These nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions and commensurate variations in enhancement factor. We present a novel synthetic approach for the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy (STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic applications where a defined and robust unit cell is crucial.

Loading...
Thumbnail Image
Item

Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces

2019, Mayer, Martin, Schnepf, Max J., König, Tobias A.F., Fery, Andreas

Metallic nanostructures exhibit strong interactions with electromagnetic radiation, known as the localized surface plasmon resonance. In recent years, there is significant interest and growth in the area of coupled metallic nanostructures. In such assemblies, short- and long-range coupling effects can be tailored and emergent properties, e.g., metamaterial effects, can be realized. The term “plasmonic metasurfaces” is used for this novel class of assemblies deposited on planar surfaces. Herein, the focus is on plasmonic metasurfaces formed from colloidal particles. These are formed by self-assembly and can meet the demands of low-cost manufacturing of large-area, flexible, and ultrathin devices. The advances in high optical quality of the colloidal building blocks and methods for controlling their self-assembly on surfaces will lead to novel functional devices for dynamic light modulators, pulse sharpening, subwavelength imaging, sensing, and quantum devices. This progress report focuses on predicting optical properties of single colloidal building blocks and their assemblies, wet-chemical synthesis, and directed self-assembly of colloidal particles. The report concludes with a discussion of the perspectives toward expanding the colloidal plasmonic metasurfaces concept by integrating them with quantum emitters (gain materials) or mechanically responsive structures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Relevance of π-Backbonding for the Reactivity of Electrophilic Anions [B12X11]− (X=F, Cl, Br, I, CN)

2021, Mayer, Martin, Rohdenburg, Markus, Kawa, Sebastian, Horn, Francine, Knorke, Harald, Jenne, Carsten, Tonner, Ralf, Asmis, Knut R., Warneke, Jonas

Electrophilic anions of type [B12X11]− posses a vacant positive boron binding site within the anion. In a comparatitve experimental and theoretical study, the reactivity of [B12X11]− with X=F, Cl, Br, I, CN is characterized towards different nucleophiles: (i) noble gases (NGs) as σ-donors and (ii) CO/N2 as σ-donor-π-acceptors. Temperature-dependent formation of [B12X11NG]− indicates the enthalpy order (X=CN)>(X=Cl)≈(X=Br)>(X=I)≈(X=F) almost independent of the NG in good agreement with calculated trends. The observed order is explained by an interplay of the electron deficiency of the vacant boron site in [B12X11]− and steric effects. The binding of CO and N2 to [B12X11]− is significantly stronger. The B3LYP 0 K attachment enthapies follow the order (X=F)>(X=CN)>(X=Cl)>(X=Br)>(X=I), in contrast to the NG series. The bonding motifs of [B12X11CO]− and [B12X11N2]− were characterized using cryogenic ion trap vibrational spectroscopy by focusing on the CO and N2 stretching frequencies (Formula presented.) and (Formula presented.), respectively. Observed shifts of (Formula presented.) and (Formula presented.) are explained by an interplay between electrostatic effects (blue shift), due to the positive partial charge, and by π-backdonation (red shift). Energy decomposition analysis and analysis of natural orbitals for chemical valence support all conclusions based on the experimental results. This establishes a rational understanding of [B12X11]− reactivety dependent on the substituent X and provides first systematic data on π-backdonation from delocalized σ-electron systems of closo-borate anions. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH