Search Results

Now showing 1 - 4 of 4
  • Item
    Structural defects in Fe-Pd-based ferromagnetic shape memory alloys: Tuning transformation properties by ion irradiation and severe plastic deformation
    (Bristol : IOP, 2012) Mayr, S.G.; Arabi-Hashemi, A.
    Fe-Pd-based ferromagnetic shape memory alloys constitute an exciting class of magnetically switchable smart materials that reveal excellent mechanical properties and biocompatibility. However, their application is severely hampered by a lack of understanding of the physics at the atomic scale. A many-body potential is presented that matched ab inito calculations and can account for the energetics of martensite ↔ austenite transition along the Bain path and relative phase stabilities in the ordered and disordered phases of Fe-Pd. Employed in massively parallel classical molecular dynamics simulations, the impact of order/disorder, point defects and severe plastic deformation in the presence of single- and polycrystalline microstructures are explored as a function of temperature. The model predictions are in agreement with experiments on phase changes induced by ion irradiation, cold rolling and hammering, which are also presented.
  • Item
    Epitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory films
    (College Park, MD : Institute of Physics Publishing, 2009) Kühnemund, L.; Edler, T.; Kock, I.; Seibt, M.; Mayr, S.G.
    To achieve maximum performance in microscale magnetic shape memory actuation devices epitaxial films several hundred nanometers thick are needed. Epitaxial films were grown on hot MgO substrates (500 °C and above) by e-beam evaporation. Structural properties and stress relaxation mechanisms were investigated by high-resolution transmission electron microscopy, in situ substrate curvature measurements and classical molecular dynamics (MD) simulations. The high misfit stress incorporated during Vollmer-Weber growth at the beginning was relaxed by partial or perfect dislocations depending on the substrate temperature. This relaxation allowed the avoidance of a stressinduced breakdown of epitaxy and no thickness limit for epitaxy was found. For substrate temperatures of 690 °C or above, the films grew in the fee austenite phase. Below this temperature, iron precipitates were formed. MD simulations showed how these precipitates influence the movements of partial dislocations, and can thereby explain the higher stress level observed in the experiments in the initial stage of growth for these films. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO
    (Milton Park : Taylor & Francis, 2008) Edler, Tobias; Buschbeck, Jörg; Mickel, Christine; Fähler, Sebastian; Mayr, S.G.
    Mechanical stress generation during epitaxial growth of Fe–Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning.
  • Item
    Nanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films
    (Abingdon : Taylor & Francis, 2013) Landgraf, A.; Jakob, A.M.; Ma, Y.; Mayr, S.G.
    Ferromagnetic shape memory alloys are characterized by strong magneto-mechanical coupling occurring at the atomic scale causing large magnetically inducible strains at the macroscopic level. Employing combined atomic and magnetic force microscopy studies at variable temperature, we systematically explore the relation between the magnetic domain pattern and the underlying structure for as-deposited and freestanding single-crystalline Fe7Pd3 thin films across the martensite-austenite transition. We find experimental evidence that magnetic domain appearance is strongly affected by the presence and absence of nanotwinning. While the martensite-austenite transition upon temperature variation of as-deposited films is clearly reflected in topography by the presence and absence of a characteristic surface corrugation pattern, the magnetic domain pattern is hardly affected. These findings are discussed considering the impact of significant thermal stresses arising in the austenite phase. Freestanding martensitic films reveal a hierarchical structure of micro- and nanotwinning. The associated domain organization appears more complex, since the dominance of magnetic energy contributors alters within this length scale regime.