Search Results

Now showing 1 - 3 of 3
  • Item
    Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications
    (Basel : MDPI, 2022) Frenzel, Jan; Kupferer, Astrid; Zink, Mareike; Mayr, Stefan G.
    Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron–material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, (Formula presented.) -potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material’s cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring.
  • Item
    Carbon and Neon Ion Bombardment Induced Smoothing and Surface Relaxation of Titania Nanotubes
    (Basel : MDPI, 2021) Kupferer, Astrid; Mensing, Michael; Lehnert, Jan; Mändl, Stephan; Mayr, Stefan G.
    Titania nanotube arrays with their enormous surface area are the subject of much attention in diverse fields of research. In the present work, we show that not only 60 keV and 150 keV ion bombardment of amorphous titania nanotube arrays yields defect creation within the tube walls, but it also changes the surface morphology: the surface relaxes and smoothens in accordance with a curvature-driven surface material’s transport mechanism, which is mediated by radiation-induced viscous flow or radiation-enhanced surface diffusion, while the nanotubes act as additional sinks for the particle surface currents. These effects occur independently of the ion species: both carbon and neon ion bombardments result in comparable surface relaxation responses initiated by an ion energy of 60 keV at a fluence of 1 × 1016 ions/cm2. Using atomic force microscopy and contact angle measurements, we thoroughly study the relaxation effects on the surface topography and surface free energy, respectively. Moreover, surface relaxation is accompanied by further amorphization in surface-near regions and a reduction in the mass density, as demonstrated by Raman spectroscopy and X-ray reflectivity. Since ion bombardment can be performed on global and local scales, it constitutes a versatile tool to achieve well-defined and tunable topographies and distinct surface characteristics. Hence, different types of nanotube arrays can be modified for various applications.
  • Item
    Employing Nanostructured Scaffolds to Investigate the Mechanical Properties of Adult Mammalian Retinae Under Tension
    (Basel : Molecular Diversity Preservation International, 2020) Juncheed, Kantida; Kohlstrunk, Bernd; Friebe, Sabrina; Dallacasagrande, Valentina; Maurer, Patric; Reichenbach, Andreas; Mayr, Stefan G.; Zink, Mareike
    Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young’s moduli of (760–1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.