Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Detachment of an adhered micropillar from a dissimilar substrate

2015, Khaderi, S.N., Fleck, N.A., Arzt, E., McMeeking, R.M.

Abstract The mechanics of detachment is analysed for 2D flat-bottomed planar pillars and 3D cylindrical pillars from a dissimilar elastic substrate. Application of an axial stress to the free end of the pillar results in a singularity in stress at the corner with the substrate. An eigenvalue analysis reveals that the stress field near the corner is dominated by two singular eigenfields having eigenvalues ( λ 1 , λ 2 ) with corresponding intensities ( H 1 , H 2 ) . The asymptotic stress field σij is of the form σ ij = H 1 r λ 1 − 1 f ij ( λ 1 , θ ) + H 2 r λ 2 − 1 f ij ( λ 2 , θ ) , where fij describe the angular dependence θ of σij, and r is the radial distance from the corner. The stress intensities ( H 1 , H 2 ) are calculated numerically, using a domain integral approach, as a function of the elastic mismatch between the pillar and substrate. The singular zone extends across approximately 10 of the pillar diameter (in 3D) or pillar width (in 2D). Interfacial failure is predicted for an assumed crack emanating from the corner of pillar and substrate. For the case of an interfacial crack that resides within the domain of corner singularity, a boundary layer analysis is performed to calculate the dependence of the interfacial stress intensity factor K upon ( H 1 , H 2 ) . When the crack extends beyond the domain of corner singularity, it is necessary to consider the full geometry in order to obtain K. A case study explores the sensitivity of the pull-off stress to the flaw size and to the degree of material mismatch. The study has implications for the optimum design of adhesive surface micropatterns, for bonding to either stiffer or more compliant substrates.

Loading...
Thumbnail Image
Item

The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices

2020, Cao, H., Wu, M.H., Zhou, F., McMeeking, R.M., Ritchie, R.O.

One of the contentious issues associated with the high-cycle fatigue of Nitinol, a nominally equiatomic alloy of nickel and titanium, is the claim that increasing the applied mean strain can increase, or at least have no negative impact, on the fatigue lifetime, in conflict with reported behavior for the vast majority of other metallic materials. To investigate this in further detail, cyclic fatigue tests in bending were carried out on electropolished medical grade Nitinol at 37 °C for lives of up to 400 million cycles of strain involving various levels of the mean strain. A constant life model was developed through statistical analysis of the fatigue data, with 90% reliability at a confidence level of 95% on the effective fatigue strain. Our results show that the constant life diagram, a plot of strain amplitude versus mean strain, is monotonic yet nonlinear for lives of 400 million cycles of fatigue loading. Specifically, we find that in contradiction to the aforementioned claim, the strain amplitude limit at zero mean strain is 0.55% to achieve a 400 million cycle lifetime, at 90% reliability with 95% confidence; however, to achieve the same lifetime, reliability and confidence level in the presence of a 3% or more mean strain, the required strain amplitude limit is decreased by over a factor of three to 0.16%. Moreover, for mean strains from 3% to 7%, the strain amplitude limit that allows a 400 million cycle lifetime, at 90% reliability with 95% confidence, is ~ 0.16%, and essentially independent of mean strain. We conclude that the debatable claim that an increase in the applied mean strain can increase the fatigue life of Nitinol components is not supported by the current data.

Loading...
Thumbnail Image
Item

Numerical simulation of the edge stress singularity and the adhesion strength for compliant mushroom fibrils adhered to rigid substrates

2016, Balijepalli, R.G., Begley, M.R., Fleck, N.A., McMeeking, R.M., Arzt, E.

Bio-inspired adhesion of micropatterned surfaces due to intermolecular interactions has attracted much research interest over the last decade. Experiments show that the best adhesion is achieved with compliant “mushroom”-shaped fibrils. This paper analyses numerically the effects of different mushroom shapes on adhesion to a rigid substrate. When a remote stress is applied on the free end of a fibril perfectly bonded to a rigid substrate, the resultant stress distribution along the fibril is found to change dramatically between the straight punch and mushroom fibrils. A singular stress field is present at the edge of the fibril where it contacts the substrate and, in this work, the amplitude of the singularity is evaluated for fibrils perfectly bonded to a flat substrate so that sliding cannot occur there. This exercise is carried out for fibril geometries involving combinations of different diameters and thicknesses of the mushroom cap. By assuming a pre-existing detachment length at the corner where the stress singularity lies, we predict the adhesive strength for various mushroom cap shapes. Our study shows that a smaller stalk diameter and a thinner mushroom cap lead to higher adhesive strengths. A limited number of results are also given for other shapes, including those having a fillet radius connecting the stalk to the cap. The results support the rational optimization of synthetic micropatterned adhesives.