Search Results

Now showing 1 - 2 of 2
  • Item
    The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices
    (Amsterdam : Elsevier, 2020) Cao, H.; Wu, M.H.; Zhou, F.; McMeeking, R.M.; Ritchie, R.O.
    One of the contentious issues associated with the high-cycle fatigue of Nitinol, a nominally equiatomic alloy of nickel and titanium, is the claim that increasing the applied mean strain can increase, or at least have no negative impact, on the fatigue lifetime, in conflict with reported behavior for the vast majority of other metallic materials. To investigate this in further detail, cyclic fatigue tests in bending were carried out on electropolished medical grade Nitinol at 37 °C for lives of up to 400 million cycles of strain involving various levels of the mean strain. A constant life model was developed through statistical analysis of the fatigue data, with 90% reliability at a confidence level of 95% on the effective fatigue strain. Our results show that the constant life diagram, a plot of strain amplitude versus mean strain, is monotonic yet nonlinear for lives of 400 million cycles of fatigue loading. Specifically, we find that in contradiction to the aforementioned claim, the strain amplitude limit at zero mean strain is 0.55% to achieve a 400 million cycle lifetime, at 90% reliability with 95% confidence; however, to achieve the same lifetime, reliability and confidence level in the presence of a 3% or more mean strain, the required strain amplitude limit is decreased by over a factor of three to 0.16%. Moreover, for mean strains from 3% to 7%, the strain amplitude limit that allows a 400 million cycle lifetime, at 90% reliability with 95% confidence, is ~ 0.16%, and essentially independent of mean strain. We conclude that the debatable claim that an increase in the applied mean strain can increase the fatigue life of Nitinol components is not supported by the current data.
  • Item
    Cracking and associated volumetric expansion of NMC811 secondary particles
    (New York, NY [u.a.] : Elsevier, 2023) Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.
    Secondary particles comprising a large number of nickel-rich single crystal primary particles are extensively used as storage particles in cathodes of lithium-ion batteries. It is well-established that crack formation in secondary particles is an important degradation mode that contributes to decline in battery performance. Recent X-ray tomographic observations suggest that, at very low C-rates, concentration gradients of lithium within an NMC811 secondary particle are negligible yet cracking still occurs. Additionally, during delithiation the primary particles shrink yet a volumetric expansion of the secondary particle occurs. These observations are explained by a numerical model of distributed cracking due to the extreme anisotropy of lithiation strain of primary particles. The incompatible deformation from grain to grain induces large self-stresses even in the absence of spatial gradients in the lithium concentration. The stress state is sufficient to drive a dynamic catastrophic fracture event, and the associated kinetic energy acquired by the primary particles moves them apart (akin to an explosive event) with the carbon and binder domain surrounding each secondary particle restricting the outward motion of the primary particles. It is predicted that a volume expansion of the secondary particles on the order of 20 % accompanies cracking, in agreement with recently reported observations.