Search Results

Now showing 1 - 9 of 9
  • Item
    Cohesive detachment of an elastic pillar from a dissimilar substrate
    (Amsterdam : Elsevier, 2017) Fleck, Norman A.; Khaderi, Syed Nizamuddin; McMeeking, Robert M.; Arzt, Eduard
    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of in- tense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion- strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohe- sive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value H c of the corner stress inten- sity. The estimated pull-offforce is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and sub- strate.
  • Item
    Numerical study of adhesion enhancement by composite fibrils with soft tip layers
    (Amsterdam : Elsevier, 2016) Balijepalli, Ram Gopal; Fischer, Sarah C.L.; Hensel, René; McMeeking, Robert M.; Arzt, Eduard
    Bio-inspired fibrillar surfaces with reversible adhesion to stiff substrates have been thoroughly investigated over the last decade. In this paper we propose a novel composite fibril consisting of a soft tip layer and stiffer stalk with differently shaped interfaces (flat vs. curved) between them. A tensile stress is applied remotely on the free end of the fibril whose other end adheres to a rigid substrate. The stress distributions and the resulting adhesion of such structures were numerically investigated under plane strain (2D) and axisymmetric (3D) conditions. The stress intensities were evaluated for different combinations of layer thickness and Young’s moduli. The adhesion strength values were found to increase for thinner layers and larger modulus ratio; these trends are also reflected in selected experimental results. The results of this paper provide a new strategy for optimizing adhesion strength of fibrillar surfaces.
  • Item
    On the afferrante-carbone theory of ultratough tape peeling
    (Niš : Univ., 2023) Ciavarella, Michele; McMeeking, Robert M.; Cricrì, Gabriele
    In a simple and interesting theory of ultratough peeling of an elastic tape from a viscoelastic substrate, Afferrante and Carbone find that there are conditions for which the load for steady state peeling could be arbitrarily large in steady state peeling, at low angles of peeling-what they call "ultratough" peeling (Afferrante, L., Carbone, G., 2016, The ultratough peeling of elastic tapes from viscoelastic substrates, Journal of the Mechanics and Physics of Solids, 96, pp.223-234). Surprisingly, this seems to lead to toughness enhancement higher than the limit value observed in a very large crack in an infinite viscoelastic body, possibly even considering a limit on the stress transmitted. The Afferrante-Carbone theory seems to be a quite approximate, qualitative theory and many aspects and features of this "ultratough" peeling (e.g. conformity with the Rivlin result at low peel angles) are obtained also through other mechanisms (Begley, M.R., Collino, R.R., Israelachvili, J.N., McMeeking, R.M., 2013, Peeling of a tape with large deformations and frictional sliding, Journal of the Mechanics and Physics of Solids, 61(5), pp. 1265-1279) although not at “critical velocities”. Experimental and/or numerical verification would be most useful.
  • Item
    Adhesion of a rigid punch to a confined elastic layer revisited
    (Milton Park : Taylor & Francis, 2017) Hensel, René; McMeeking, Robert M.; Kossa, Attila
    The adhesion of a punch to a linear elastic, confined layer is investigated. Numerical analysis is performed to determine the equivalent elastic modulus in terms of layer confinement. The size of the layer relative to the punch radius and its Poisson’s ratio are found to affect the layer stiffness. The results reveal that the equivalent modulus of a highly confined layer depends on its Poisson’s ratio, whereas, in contrast, an unconfined layer is only sensitive to the extent of the elastic film. The solutions of the equivalent modulus obtained from the simulations are fitted by an analytical function that, subsequently, is utilized to deduce the energy release rate for detachment of the punch via linear elastic fracture mechanics. The energy release rate strongly varies with layer confinement. Regimes for stable and unstable crack growth can be identified that, in turn, are correlated to interfacial stress distributions to distinguish between different detachment mechanisms.
  • Item
    Adhesion of a cylindrical punch with elastic properties that vary radially
    (Amsterdam [u.a.] : Elsevier, 2023) Kossa, Attila; Hensel, René; McMeeking, Robert M.
    The adhesion of a rigid substrate and an adhered straight cylindrical punch with a non-homogeneous elastic modulus is analyzed. The stress distributions are obtained along the interface for various elastic modulus gradients. The calculations are performed in the commercial finite element software Abaqus using a user material (UMAT) subroutine to control the dependence of Young's modulus on the radial position. The UMAT code is shared in the paper. The results reveal that the decreasing elastic modulus toward the perimeter of the punch can be used to significantly reduce the normal stress magnitudes in the singularity domain, which leads to stronger adhesion. The increase in the adhesion strength is characterized numerically. The effect of Poisson's ratio is also analyzed.
  • Item
    Analysis of the compressible, isotropic, neo-Hookean hyperelastic model
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Kossa, Attila; Valentine, Megan T.; McMeeking, Robert M.
    The most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.
  • Item
    Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces
    (Hoboken, NJ : Wiley, 2016) Barreau, Viktoriia; Hensel, René; Guimard, Nathalie K.; Ghatak, Animangsu; McMeeking, Robert M.; Arzt, Eduard
    Biologically inspired, fibrillar dry adhesives continue to attract much attention as they are instrumental for emerging applications and technologies. To date, the adhesion of micropatterned gecko-inspired surfaces has predominantly been tested on stiff, smooth substrates. However, all natural and almost all artificial surfaces have roughnesses on one or more different length scales. In the present approach, micropillar-patterned PDMS surfaces with superior adhesion to glass substrates with different roughnesses are designed and analyzed. The results reveal for the first time adhesive and nonadhesive states depending on the micropillar geometry relative to the surface roughness profile. The data obtained further demonstrate that, in the adhesive regime, fibrillar gecko-inspired adhesive structures can be used with advantage on rough surfaces; this finding may open up new applications in the fields of robotics, biomedicine, and space exploration.
  • Item
    A bioinspired snap-through metastructure for manipulating micro-objects
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2022) Zhang, Xuan; Wang, Yue; Tian, Zhihao; Samri, Manar; Moh, Karsten; McMeeking, Robert M.; Hensel, René; Arzt, Eduard
    Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects.
  • Item
    Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices
    (Amsterdam [u.a.] : Elsevier Science, 2021) Arzt, Eduard; Quan, Haocheng; McMeeking, Robert M.; Hensel, René
    In the course of evolution nature has arrived at startling materials solutions to ensure survival. Investigations into biological surfaces, ranging from plants, insects and geckos to aquatic animals, have inspired the design of intricate surface patterns to create useful functionalities. This paper reviews the fundamental interaction mechanisms of such micropatterns with liquids, solids, and soft matter such as skin for control of wetting, self-cleaning, anti-fouling, adhesion, skin adherence, and sensing. Compared to conventional chemical strategies, the paradigm of micropatterning enables solutions with superior resource efficiency and sustainability. Associated applications range from water management and robotics to future health monitoring devices. We finally provide an overview of the relevant patterning methods as an appendix.