Search Results

Now showing 1 - 2 of 2
  • Item
    Recent advances in d-lactic acid production from renewable resources: Case studies on agro-industrial waste streams
    (Zagreb : Faculty of Food Technology and Biotechnology, University of Zagreb, 2019) Alexandri, Maria; Schneider, Roland; Mehlmann, Kerstin; Venus, Joachim
    The production of biodegradable polymers as alternatives to petroleum-based plastics has gained significant attention in the past years. To this end, polylactic acid (PLA) constitutes a promising alternative, finding various applications from food packaging to pharmaceuticals. Recent studies have shown that d-lactic acid plays a vital role in the production of heat-resistant PLA. At the same time, the utilization of renewable resources is imperative in order to decrease the production cost. This review aims to provide a synopsis of the current state of the art regarding d-lactic acid production via fermentation, focusing on the exploitation of waste and byproduct streams. An overview of potential downstream separation schemes is also given. Additionally, three case studies are presented and discussed, reporting the obtained results utilizing acid whey, coffee mucilage and hydrolysate from rice husks as alternative feedstocks for d-lactic acid production. © 2019, University of Zagreb.
  • Item
    Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales
    (Amsterdam : Elsevier, 2016) Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim
    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121 °C for 30 min in presence of 0.18 mol L−1 H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (g L−1) glucose (20–30), xylose (15–25), sucrose (5–11) and arabinose (0.7–10). Fermentations were carried out at laboratory (2 L) and pilot (50 L) scales in presence of 10 g L−1 yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78 g g−1, respectively. The productivity was 4.02 g L−1 h−1. Downstream processing resulted in a pure formulation containing 937 g L−1 l(+)-lactic acid with an optical purity of 99.7%.