Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Limited life cycle andcost assessment for the bioconversion of lignin‐derived aromatics into adipic acid

2020, van Duuren, Jozef B.J.H., de Wild, Paul J., Starck, Sören, Bradtmöller, Christian, Selzer, Mirjam, Mehlmann, Kerstin, Schneider, Roland, Kohlstedt, Michael, Poblete‐Castr, Ignacio, Stolzenberger, Jessica, Barton, Nadja, Fritz, Michel, Scholl, Stephan, Venus, Joachim, Wittmann, Christoph

Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. © 2020 Wiley Periodicals, Inc.

Loading...
Thumbnail Image
Item

Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales

2016, Pleissner, Daniel, Neu, Anna-Katrin, Mehlmann, Kerstin, Schneider, Roland, Puerta-Quintero, Gloria Inés, Venus, Joachim

In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121 °C for 30 min in presence of 0.18 mol L−1 H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (g L−1) glucose (20–30), xylose (15–25), sucrose (5–11) and arabinose (0.7–10). Fermentations were carried out at laboratory (2 L) and pilot (50 L) scales in presence of 10 g L−1 yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78 g g−1, respectively. The productivity was 4.02 g L−1 h−1. Downstream processing resulted in a pure formulation containing 937 g L−1 l(+)-lactic acid with an optical purity of 99.7%.

Loading...
Thumbnail Image
Item

CE-UV/VIS and CE-MS for monitoring organic impurities during the downstream processing of fermentative-produced lactic acid from second-generation renewable feedstocks

2016, Laube, Hendrik, Matysik, Frank-Michael, Schmidberger, Andreas, Mehlmann, Kerstin, Toursel, Andreas

During the downstream process of bio-based bulk chemicals, organic impurities, mostly residues from the fermentation process, must be separated to obtain a pure and ready-to-market chemical. In this study, capillary electrophoresis was investigated for the non-targeting downstream process monitoring of organic impurities and simultaneous quantitative detection of lactic acid during the purification process of fermentatively produced lactic acid. The downstream process incorporated 11 separation units, ranging from filtration, adsorption and ion exchange to electrodialysis and distillation, and 15 different second-generation renewable feedstocks were processed into lactic acid. The identification of organic impurities was established through spiking and the utilization of an advanced capillary electrophoresis mass spectrometry system

Loading...
Thumbnail Image
Item

Recent advances in d-lactic acid production from renewable resources: Case studies on agro-industrial waste streams

2019, Alexandri, Maria, Schneider, Roland, Mehlmann, Kerstin, Venus, Joachim

The production of biodegradable polymers as alternatives to petroleum-based plastics has gained significant attention in the past years. To this end, polylactic acid (PLA) constitutes a promising alternative, finding various applications from food packaging to pharmaceuticals. Recent studies have shown that d-lactic acid plays a vital role in the production of heat-resistant PLA. At the same time, the utilization of renewable resources is imperative in order to decrease the production cost. This review aims to provide a synopsis of the current state of the art regarding d-lactic acid production via fermentation, focusing on the exploitation of waste and byproduct streams. An overview of potential downstream separation schemes is also given. Additionally, three case studies are presented and discussed, reporting the obtained results utilizing acid whey, coffee mucilage and hydrolysate from rice husks as alternative feedstocks for d-lactic acid production. © 2019, University of Zagreb.