Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields

2018, Wunderlich, Ralf, Kohlrautz, Jonas, Abel, Bernd, Haase, Jürgen, Meijer, Jan

In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.

Loading...
Thumbnail Image
Item

Robust nuclear hyperpolarization driven by strongly coupled nitrogen vacancy centers

2021, Wunderlich, Ralf, Staacke, Robert, Knolle, Wolfgang, Abel, Bernd, Haase, Jürgen, Meijer, Jan

Nuclear magnetic resonance techniques are widely used in the natural sciences but they lack sensitivity. Therefore, large sample volumes or long measurement times are necessary. In this work, we investigate the polarization of bulk 13C nuclei in a diamond above the thermal equilibrium at room temperature. Previously studied mechanisms utilize direct coupling to nitrogen vacancy centers or the additional assistance of substitutional nitrogen impurities for this purpose. We exploit strongly coupled nitrogen vacancy centers as polarization sources. We study two approaches to transfer the optically induced polarization of the electron spins of the nitrogen vacancy centers to nearby nuclear spins. First, the electron-nuclear polarization transfer is achieved by energy matching conditions or, second, by magnetic field sweeps inducing Landau–Zener-like transitions. Simulations according to a quantum mechanical system consisting of two coupled nitrogen vacancy centers and a weakly coupled 13C spin show an excellent agreement with the experimental data. Both approaches allow a reduction of the measurement time by roughly three orders of magnitude.

Loading...
Thumbnail Image
Item

Detection of small bunches of ions using image charges

2018, Räcke, Paul, Spemann, Daniel, Gerlach, Jürgen W., Rauschenbach, Bernd, Meijer, Jan

A concept for detection of charged particles in a single fly-by, e.g. within an ion optical system for deterministic implantation, is presented. It is based on recording the image charge signal of ions moving through a detector, comprising a set of cylindrical electrodes. This work describes theoretical and practical aspects of image charge detection (ICD) and detector design and its application in the context of real time ion detection. It is shown how false positive detections are excluded reliably, although the signal-to-noise ratio is far too low for time-domain analysis. This is achieved by applying a signal threshold detection scheme in the frequency domain, which - complemented by the development of specialised low-noise preamplifier electronics - will be the key to developing single ion image charge detection for deterministic implantation.

Loading...
Thumbnail Image
Item

Weak electron irradiation suppresses the anomalous magnetization of N-doped diamond crystals

2021, Setzer, Annette, Esquinazi, Pablo D., Daikos, Olesya, Scherzer, Tom, Pöppl, Andreas, Staacke, Robert, Lühmann, Tobias, Pezzagna, Sebastien, Knolle, Wolfgang, Buga, Sergei, Abel, Bernd, Meijer, Jan

Several diamond bulk crystals with a concentration of electrically neutral single substitutional nitrogen atoms of ≲80 ppm, the so-called C or P1 centers, are irradiated with electrons at 10 MeV energy and low fluence. The results show a complete suppression of the irreversible behavior in field and temperature of the magnetization below 30 K, after a decrease in ≲40 ppm in the concentration of C centers produced by the electron irradiation. This result indicates that magnetic C centers are at the origin of the large hysteretic behavior found recently in nitrogen-doped diamond crystals. This is remarkable because of the relatively low density of C centers, stressing the extraordinary role of the C centers in triggering those phenomena in diamond at relatively high temperatures. After annealing the samples at high temperatures in vacuum, the hysteretic behavior is partially recovered.

Loading...
Thumbnail Image
Item

Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

2017, John, Roger, Lehnert, Jan, Mensing, Michael, Spemann, Daniel, Pezzagna, Sébastien, Meijer, Jan

Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

Loading...
Thumbnail Image
Item

Magnetic field and angle-dependent photoluminescence of a fiber-coupled nitrogen vacancy rich diamond

2021, Wunderlich, Ralf, Staacke, Robert, Knolle, Wolfgang, Abel, Bernd, Meijer, Jan

Here, we investigate the magnetic field dependent photoluminescence (PL) of a fiber-coupled diamond single crystal with a high density of nitrogen vacancy (NV) centers. Angle-dependent magnetic field sweep measurements between 0 and 111 mT were performed using an oscillating illumination combined with lock-in techniques. Besides the expected superposed PL of differently oriented NV centers, a zoo of features in the PL are found. These features can be associated with level anti-crossings and cross relaxations. In particular, PL measurements allowed us to detect auto-cross relaxation between coupled NV centers. Moreover, the PL measurements at low magnetic fields show dips suggesting an interaction of NV centers with additional spin defects. The results presented here are not only a study for NV-based fiber-coupled sensors made of diamond, but also show a way to investigate with manageable effort and purely an optical multispin interaction with at least one NV center as a constituent.

Loading...
Thumbnail Image
Item

Nanoscale ion implantation using focussed highly charged ions

2020, Räcke, Paul, Wunderlich, Ralf, Gerlach, Jürgen W., Meijer, Jan, Spemann, Daniel

We introduce a focussed ion beam (FIB) based ion implanter equipped with an electron beam ion source (EBIS), able to produce highly charged ions. As an example of its utilisation, we demonstrate the direct writing of nitrogen-vacancy centres in diamond using focussed, mask-less irradiation with Ar8+ ions with sub-micron three dimensional placement accuracy. The ion optical system was optimised and is characterised via secondary electron imaging. The smallest measured foci are below 200 nm, using objective aperture diameters of 5 and 10 µm, showing that nanoscale ion implantation using an EBIS is feasible. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.