Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

2020, Laj, Paolo, Bigi, Alessandro, Rose, Clémence, Andrews, Elisabeth, Lund Myhre, Cathrine, Collaud Coen, Martine, Lin, Yong, Wiedensohler, Alfred, Schulz, Michael, Ogren, John A., Fiebig, Markus, Prenni, Anthony, Reisen, Fabienne, Romano, Salvatore, Sellegri, Karine, Sharma, Sangeeta, Schauer, Gerhard, Sheridan, Patrick, Sherman, James Patrick, Schütze, Maik, Schwerin, Andreas, Tuch, Thomas, Sohmer, Ralf, Sorribas, Mar, Steinbacher, Martin, Sun, Junying, Titos, Gloria, Toczko, Barbara, Tulet, Pierre, Tunved, Peter, Vakkari, Ville, Velarde, Fernando, Velasquez, Patricio, Villani, Paolo, Vratolis, Sterios, Wang, Sheng-Hsiang, Weinhold, Kay, Gliß, Jonas, Weller, Rolf, Yela, Margarita, Yus-Diez, Jesus, Zdimal, Vladimir, Zieger, Paul, Zikova, Nadezda, Mortier, Augustin, Pandolfi, Marco, Petäja, Tuukka, Kim, Sang-Woo, Aas, Wenche, Putaud, Jean-Philippe, Mayol-Bracero, Olga, Keywood, Melita, Labrador, Lorenzo, Aalto, Pasi, Ahlberg, Erik, Alados Arboledas, Lucas, Alastuey, Andrés, Andrade, Marcos, Artíñano, Begoña, Ausmeel, Stina, Arsov, Todor, Asmi, Eija, Backman, John, Baltensperger, Urs, Bastian, Susanne, Bath, Olaf, Beukes, Johan Paul, Brem, Benjamin T., Bukowiecki, Nicolas, Conil, Sébastien, Couret, Cedric, Day, Derek, Dayantolis, Wan, Degorska, Anna, Eleftheriadis, Konstantinos, Fetfatzis, Prodromos, Favez, Olivier, Flentje, Harald, Gini, Maria I., Gregorič, Asta, Gysel-Beer, Martin, Hallar, A. Gannet, Hand, Jenny, Hoffer, Andras, Hueglin, Christoph, Hooda, Rakesh K., Hyvärinen, Antti, Kalapov, Ivo, Kalivitis, Nikos, Kasper-Giebl, Anne, Kim, Jeong Eun, Kouvarakis, Giorgos, Kranjc, Irena, Krejci, Radovan, Kulmala, Markku, Labuschagne, Casper, Lee, Hae-Jung, Lihavainen, Heikki, Lin, Neng-Huei, Löschau, Gunter, Luoma, Krista, Marinoni, Angela, Martins Dos Santos, Sebastiao, Meinhardt, Frank, Merkel, Maik, Metzger, Jean-Marc, Mihalopoulos, Nikolaos, Nguyen, Nhat Anh, Ondracek, Jakub, Pérez, Noemi, Perrone, Maria Rita, Petit, Jean-Eudes, Picard, David, Pichon, Jean-Marc, Pont, Veronique, Prats, Natalia

Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.

Loading...
Thumbnail Image
Item

Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018

2020, Sun, Jia, Birmili, Wolfram, Hermann, Markus, Tuch, Thomas, Weinhold, Kay, Merkel, Maik, Rasch, Fabian, Müller, Thomas, Schladitz, Alexander, Bastian, Susanne, Löschau, Gunter, Cyrys, Josef, Gu, Jianwei, Flentje, Harald, Briel, Björn, Asbach, Christoph, Kaminski, Heinz, Ries, Ludwig, Sohmer, Ralf, Gerwig, Holger, Wirtz, Klaus, Meinhardt, Frank, Schwerin, Andreas, Bath, Olaf, Ma, Nan, Wiedensohler, Alfred

Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).

Loading...
Thumbnail Image
Item

Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution

2016, Pfeifer, Sascha, Müller, Thomas, Weinhold, Kay, Zikova, Nadezda, dos Santos, Sebastiao Martins, Marinoni, Angela, Bischof, Oliver F., Kykal, Carsten, Ries, Ludwig, Meinhardt, Frank, Aalto, Pasi, Mihalopoulos, Nikolaos, Wiedensohler, Alfred

Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5–3 µm is needed.

Loading...
Thumbnail Image
Item

Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

2016, Birmili, Wolfram, Weinhold, Kay, Rasch, Fabian, Sonntag, André, Sun, Jia, Merkel, Maik, Wiedensohler, Alfred, Bastian, Susanne, Schladitz, Alexander, Löschau, Gunter, Cyrys, Josef, Pitz, Mike, Gu, Jianwei, Kusch, Thomas, Flentje, Harald, Quass, Ulrich, Kaminski, Heinz, Kuhlbusch, Thomas A.J., Meinhardt, Frank, Schwerin, Andreas, Bath, Olaf, Ries, Ludwig, Gerwig, Holger, Wirtz, Klaus, Fiebig, Markus

The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).