Search Results

Now showing 1 - 4 of 4
  • Item
    Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis
    (München : European Geopyhsical Union, 2013) Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; Friedrich, T.; Frölicher, T.L.; Halloran, P.R.; Holden, P.B.; Jones, C.; Kleinen, T.; Mackenzie, F.T.; Matsumoto, K.; Meinshausen, M.; Plattner, G.-K.; Reisinger, A.; Segschneider, J.; Shaffer, G.; Steinacher, M.; Strassmann, K.; Tanaka, K.; Timmermann, A.; Weaver, A.J.
    The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
  • Item
    Understanding the origin of Paris Agreement emission uncertainties
    (London : Nature Publishing Group, 2017) Rogelj, J.; Fricko, O.; Meinshausen, M.; Krey, V.; Zilliacus, J.J.J.; Riahi, K.
    The UN Paris Agreement puts in place a legally binding mechanism to increase mitigation action over time. Countries put forward pledges called nationally determined contributions (NDC) whose impact is assessed in global stocktaking exercises. Subsequently, actions can then be strengthened in light of the Paris climate objective: Limiting global mean temperature increase to well below 2 °C and pursuing efforts to limit it further to 1.5 °C. However, pledged actions are currently described ambiguously and this complicates the global stocktaking exercise. Here, we systematically explore possible interpretations of NDC assumptions, and show that this results in estimated emissions for 2030 ranging from 47 to 63 GtCO2e yr-1. We show that this uncertainty has critical implications for the feasibility and cost to limit warming well below 2 °C and further to 1.5 °C. Countries are currently working towards clarifying the modalities of future NDCs. We identify salient avenues to reduce the overall uncertainty by about 10 percentage points through simple, technical clarifications regarding energy accounting rules. Remaining uncertainties depend to a large extent on politically valid choices about how NDCs are expressed, and therefore raise the importance of a thorough and robust process that keeps track of where emissions are heading over time.
  • Item
    The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
    (Dordrecht [u.a.] : Springer, 2011) Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.P.
    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005-2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected 'best-estimate' global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2. 6, to 4.5°C for the highest one, RCP8. 5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2. 6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4. 5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.
  • Item
    Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
    (München : European Geopyhsical Union, 2015) Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.
    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland-affected deposits is only discernible in the 22nd and 23rd century because of the absence of abrupt thaw processes. We further show that release from organic matter stored in deep deposits of Yedoma regions crucially affects our simulated circumpolar CH4 fluxes. The additional warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission and amounts to about 0.03–0.14 °C (68% ranges) by end of the century. The warming increased further in the 22nd and 23rd century and was most pronounced under the RCP6.0 scenario, adding 0.16 to 0.39 °C (68% range) to simulated global mean surface air temperatures in the year 2300.