Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Carbon nanostructures as a multi-functional platform for sensing applications

2018, Mendes, R.G., Wróbel, P.S., Bachmatiuk, A., Sun, J., Gemming, T., Liu, Z., Rümmeli, M.H.

The various forms of carbon nanostructures are providing extraordinary new opportunities that can revolutionize the way gas sensors, electrochemical sensors and biosensors are engineered. The great potential of carbon nanostructures as a sensing platform is exciting due to their unique electrical and chemical properties, highly scalable, biocompatible and particularly interesting due to the almost infinite possibility of functionalization with a wide variety of inorganic nanostructured materials and biomolecules. This opens a whole new pallet of specificity into sensors that can be extremely sensitive, durable and that can be incorporated into the ongoing new generation of wearable technology. Within this context, carbon-based nanostructures are amongst the most promising structures to be incorporated in a multi-functional platform for sensing. The present review discusses the various 1D, 2D and 3D carbon nanostructure forms incorporated into different sensor types as well as the novel functionalization approaches that allow such multi-functionality.

Loading...
Thumbnail Image
Item

Direct chemical vapor deposition synthesis of large area single-layer brominated graphene

2019, Hasan, M., Meiou, W., Yulian, L., Ullah, S., Ta, H.Q., Zhao, L., Mendes, R.G., Malik, Z.P., Ahmad, N.M., Liu, Z., Rümmeli, M.H.

Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments. © The Royal Society of Chemistry.