Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Simultaneous Calibration of Grapevine Phenology and Yield with a Soil–Plant–Atmosphere System Model Using the Frequentist Method

2021-8-20, Yang, Chenyao, Menz, Christoph, Fraga, Helder, Reis, Samuel, Machado, Nelson, Malheiro, Aureliano C., Santos, João A.

Reliable estimations of parameter values and associated uncertainties are crucial for crop model applications in agro-environmental research. However, estimating many parameters simultaneously for different types of response variables is difficult. This becomes more complicated for grapevines with different phenotypes between varieties and training systems. Our study aims to evaluate how a standard least square approach can be used to calibrate a complex grapevine model for simulating both the phenology (flowering and harvest date) and yield of four different variety–training systems in the Douro Demarcated Region, northern Portugal. An objective function is defined to search for the best-fit parameters that result in the minimum value of the unweighted sum of the normalized Root Mean Squared Error (nRMSE) of the studied variables. Parameter uncertainties are estimated as how a given parameter value can determine the total prediction variability caused by variations in the other parameter combinations. The results indicate that the best-estimated parameters show a satisfactory predictive performance, with a mean bias of −2 to 4 days for phenology and −232 to 159 kg/ha for yield. The corresponding variance in the observed data was generally well reproduced, except for one occasion. These parameters are a good trade-off to achieve results close to the best possible fit of each response variable. No parameter combinations can achieve minimum errors simultaneously for phenology and yield, where the best fit to one variable can lead to a poor fit to another. The proposed parameter uncertainty analysis is particularly useful to select the best-fit parameter values when several choices with equal performance occur. A global sensitivity analysis is applied where the fruit-setting parameters are identified as key determinants for yield simulations. Overall, the approach (including uncertainty analysis) is relatively simple and straightforward without specific pre-conditions (e.g., model continuity), which can be easily applied for other models and crops. However, a challenge has been identified, which is associated with the appropriate assumption of the model errors, where a combination of various calibration approaches might be essential to have a more robust parameter estimation.

Loading...
Thumbnail Image
Item

Phenological model intercomparison for estimating grapevine budbreak date (Vitis vinifera L.) in Europe

2020, Leolini, Luisa, Costafreda-Aumedes, Sergi, Santos, João A., Menz, Christoph, Fraga, Helder, Molitor, Daniel, Merante, Paolo, Junk, Jürgen, Kartschall, Thomas, Destrac-Irvine, Agnès, van Leeuwen, Cornelis, Malheiro, Aureliano C., Eiras-Dias, José, Silvestre, José, Dibari, Camilla, Bindi, Marco, Moriondo, Marco

Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo-and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in dierent ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at dierent latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under-or over-estimations of budbreak date under dierent environmental conditions. © 2020 by the authors.

Loading...
Thumbnail Image
Item

A review of the potential climate change impacts and adaptation options for European viticulture

2020, Santos, João A., Fraga, Helder, Malheiro, Aureliano C., Moutinho-Pereira, José, Dinis, Lia-Tânia, Correia, Carlos, Moriondo, Marco, Leolini, Luisa, Dibari, Camilla, Costafreda-Aumedes, Sergi, Kartschall, Thomas, Menz, Christoph, Molitor, Daniel, Junk, Jürgen, Beyer, Marco, Schultz, Hans R.

Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe. © 2020 by the authors.