Search Results

Now showing 1 - 2 of 2
  • Item
    Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix-Raviart Stokes element
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Linke, Alexander; Merdon, Christian; Wollner, Winnifried
    Recently, a novel approach for the robust discretization of the incompressible Stokes equations was proposed that slightly modifies the nonconforming Crouzeix-Raviart element such that its velocity error becomes pressure-independent. The modification results in an O(h) consistency error that allows straightforward proofs for the optimal convergence of the discrete energy norm of the velocity and of the L2 norm of the pressure. However, though the optimal convergence of the velocity in the L2 norm was observed numerically, it appeared to be nontrivial to prove. In this contribution, this gap is closed. Moreover, the dependence of the energy error estimates on the discrete inf-sup constant is traced in detail, which shows that classical error estimates are extremely pessimistic on domains with large aspect ratios. Numer-ical experiments in 2D and 3D illustrate the theoretical findings.
  • Item
    On really locking-free mixed finite element methods for the transient incompressible Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Ahmed, Naveed; Linke, Alexander; Merdon, Christian
    Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the divergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its velocity error converges with optimal order and is independent of the pressure and the smallness of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes equations, where besides the right hand side also the velocity time derivative requires an improved space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates are derived, which show beautiful robustness properties. Two numerical examples illustrate the superior accuracy of pressure-robust space discretizations in the case of small viscosities.