Search Results

Now showing 1 - 2 of 2
  • Item
    Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Linke, Alexander; Merdon, Christian; Neilan, Michael; Neumann, Felix
    Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a non-standard discretization of the right hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressurerobust scheme with low regularity. The numerical analysis applies divergence-free H1-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a-priori error estimates will be presented for the (first order) nonconforming CrouzeixRaviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.
  • Item
    Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Linke, Alexander; Merdon, Christian
    Recently, it was understood how to repair a certain L2-orthogonality of discretely-divergence-free vector fields and gradient fields such that the velocity error of inf-sup stable discretizations for the incompressible Stokes equations becomes pressure-independent. These new pressure-robust Stokes discretizations deliver a small velocity error, whenever the continuous velocity field can be well approximated on a given grid. On the contrary, classical inf-sup stable Stokes discretizations can guarantee a small velocity error only, when both the velocity and the pressure field can be approximated well, simultaneously. In this contribution, pressure-robustness is extended to the time-dependent Navier-Stokes equations. In particular, steady and time-dependent potential flows are shown to build an entire class of benchmarks, where pressure-robust discretizations can outperform classical approaches significantly. Speedups will be explained by a new theoretical concept, the discrete Helmholtz projector of an inf-sup stable discretization. Moreover, different discrete nonlinear convection terms are discussed, and skew-symmetric pressure-robust discretizations are proposed.