Search Results

Now showing 1 - 2 of 2
  • Item
    Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization
    (Cambridge : RSC, 2019) Mergel, Olga; Schneider, Sabine; Tiwari, Rahul; Kühn, Philipp T.; Keskin, Damla; Stuart, Marc C. A.; Schöttner, Sebastian; de Kanter, Martinus; Noyong, Michael; Caumanns, Tobias; Mayer, Joachim; Janzen, Christoph; Simon, Ulrich; Gallei, Markus; Wöll, Dominik; van Rijn, Patrick; Plamper, Felix A.
    Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications. © 2019 The Royal Society of Chemistry.
  • Item
    Influence of Polycation Composition on Electrochemical Film Formation
    (Basel : MDPI, 2018) Schneider, Sabine; Janssen, Corinna; Klindtworth, Elisabeth; Mergel, Olga; Möller, Martin; Plamper, Felix
    The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II) (ferrocyanide), leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III) (ferricyanide) ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylamino)ethyl methacrylate] (i.e., poly{[2-(methacryloyloxy)ethyl]trimethylammonium chloride}; PMOTAC), quaternized poly[2-(dimethylamino)ethyl acrylate] (i.e., poly{[2-(acryloyloxy)ethyl]trimethylammonium chloride}; POTAC), quaternized poly[N-(3-dimethylaminopropyl)methacrylamide] (i.e., poly{[3-(methacrylamido)propyl]trimethylammonium chloride}; PMAPTAC) and different statistical copolymers of these polyelectrolytes with N-(3-aminopropyl)methacrylamide (APMA), are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE) shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III) ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III) ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.