Search Results

Now showing 1 - 5 of 5
  • Item
    Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment
    (Basel : MDPI AG, 2020) Semmler, Marie Luise; Bekeschus, Sander; Schäfer, Mirijam; Bernhardt, Thoralf; Fischer, Tobias; Witzke, Katharina; Seebauer, Christian; Rebl, Henrike; Grambow, Eberhard; Vollmar, Brigitte; Nebe, J. Barbara; Metelmann, Hans-Robert; Woedtke, Thomas von; Emmert, Steffen; Boeckmann, Lars
    Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells
    (Basel : MDPI, 2019) Rödder, Katrin; Moritz, Juliane; Miller, Vandana; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert; Gandhirajan, Rajesh; Bekeschus, Sander
    Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells' activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone. © 2019 by the authors.
  • Item
    Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study
    (Basel : MDPI, 2019) Hasse, Sybille; Seebauer, Christian; Wende, Kristian; Schmidt, Anke; Metelmann, Hans-Robert; Woedtke, Thomas von; Bekeschus, Sander
    Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.
  • Item
    Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities
    (Basel : MDPI, 2020) Berner, Julia; Seebauer, Christian; Sagwal, Sanjeev Kumar; Boeckmann, Lars; Emmert, Steffen; Metelmann, Hans-Robert; Bekeschus, Sander
    Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.
  • Item
    Ex Vivo Exposure of Human Melanoma Tissue to Cold Physical Plasma Elicits Apoptosis and Modulates Inflammation
    (Basel : MDPI, 2020) Bekeschus, Sander; Moritz, Juliane; Helfrich, Iris; Boeckmann, Lars; Weltmann, Klaus-Dieter; Emmert, Steffen; Metelmann, Hans-Robert; Stoffels, Ingo; von Woedtke, Thomas
    Cutaneous melanoma is the most aggressive type of skin cancer with a not-sufficient clinical outcome. High tumor mutation rates often hamper a remedial treatment, creating the need for palliative care in many patients. To reduce pain and burden, local palliation often includes cryo-ablation, immunotherapy via injection of IL2, or electrochemotherapy. Yet, a fraction of patients and lesions do not respond to those therapies. To reach even these resistances in a redox-mediated way, we treated skin biopsies from human melanoma ex vivo with cold physical plasma (kINPen MED plasma jet). This partially ionized gas generates a potent mixture of reactive oxygen species (ROS). Physical plasmas have been shown to be potent antitumor agents in preclinical melanoma and clinical head and neck cancer research. The innovation of this technology lies in its ease-of-use without anesthesia, as the “cold” plasma temperature of the kINPen MED does not exceed 37 °C. In metastatic melanoma skin biopsies from six patients, we identified a marked increase of apoptosis with plasma treatment ex vivo. This had an impact on the chemokine/cytokine profile of the cultured biopsies, e.g., three of six patient-derived biopsy supernatants showed an apparent decrease in VEGF compared to non-plasma treated specimens. Moreover, the baseline release levels of 24 chemokines/cytokines investigated may serve as a useful tool for future research on melanoma skin biopsy treatments. Our findings suggest a clinically useful role of cold physical plasma therapy in palliation of cutaneous melanoma lesions, possibly in a combinatory setting with other immune therapies.