Search Results

Now showing 1 - 4 of 4
  • Item
    A priori error analysis for state constrained boundary control problems : Part I: Control discretization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Krumbiegel, Klaus; Meyer, Christian; Rösch, Arnd
    This is the first of two papers concerned with a state-constrained optimal control problems with boundary control, where the state constraints are only imposed in an interior subdomain. We apply the virtual control concept introduced in [20] to regularize the problem. The arising regularized optimal control problem is discretized by finite elements and linear and continuous ansatz functions for the boundary control. In the first part of the work, we investigate the errors induced by the regularization and the discretization of the boundary control. The second part deals with the error arising from discretization of the PDE. Since the state constraints only appear in an inner subdomain, the obtained order of convergence exceeds the known results in the field of a priori analysis for state-constrained problems
  • Item
    Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Meyer, Christian; Yousept, Irwin
    A state-constrained optimal control problem with nonlocal radiation interface conditions arising from the modeling of crystal growth processes is considered. The problem is approximated by a Moreau-Yosida type regularization. Optimality conditions for the regularized problem are derived and the convergence of the regularized problems is shown. In the last part of the paper, some numerical results are presented.
  • Item
    State-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Meyer, Christian; Yousept, Irwin
    We consider a control- and state-constrained optimal control problem governed by a semilinear elliptic equation with nonlocal interface conditions. These conditions occur during the modeling of diffuse-gray conductive-radiative heat transfer. The nonlocal radiation interface condition and the pointwise state-constraints represent the particular features of this problem. To deal with the state-constraints, continuity of the state is shown which allows to derive first-order necessary conditions. Afterwards, we establish second-order sufficient conditions that account for strongly active sets and ensure local optimality in an $L^2$-neighborhood.
  • Item
    Optimal control of the thermistor problem in three spatial dimensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Meinlschmidt, Hannes; Meyer, Christian; Rehberg, Joachim
    This paper is concerned with the state-constrained optimal control of the three-dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Local existence, uniqueness and continuity for the state system are derived by employing maximal parabolic regularity in the fundamental theorem of Pr¨uss. Global solutions are addressed, which includes analysis of the linearized state system via maximal parabolic regularity, and existence of optimal controls is shown if the temperature gradient is under control. The adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem in form of a qualified optimality system. The theoretical findings are illustrated by numerical results