Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Deep learning as phase retrieval tool for CARS spectra

2020, Houhou, Rola, Barman, Parijat, Schmitt, Micheal, Meyer, Tobias, Popp, Juergen, Bocklitz, Thomas

Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. © 2020 OSA - The Optical Society. All rights reserved.

Loading...
Thumbnail Image
Item

Supercontinuum generation in a carbon disulfide core microstructured optical fiber

2021, Junaid, Saher, Bierlich, Joerg, Hartung, Alexander, Meyer, Tobias, Chemnitz, Mario, Schmidt, Markus A.

We demonstrate supercontinuum generation in a liquid-core microstructured optical fiber using carbon disulfide as the core material. The fiber provides a specific dispersion landscape with a zero-dispersion wavelength approaching the telecommunication domain where the corresponding capillary-type counterpart shows unsuitable dispersion properties for soliton fission. The experiments were conducted using two pump lasers with different pulse duration (30 fs and 90 fs) giving rise to different non-instantaneous contributions of carbon disulfide in each case. The presented results demonstrate an extraordinary high conversion efficiency from pump to soliton and to dispersive wave, overall defining a platform that enables studying the impact of non-instantaneous responses on ultrafast soliton dynamics and coherence using straightforward pump lasers and diagnostics.

Loading...
Thumbnail Image
Item

Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4

2020, Schaarschmidt, Kay, Kobelke, Jens, Nolte, Stefan, Meyer, Tobias, Schmidt, Markus A.

Third harmonic generation in a circular liquid core step-index fiber filled with a highly transparent inorganic solvent is demonstrated experimentally using ultrafast pump pulses of different durations in the telecom domain for the first time. Specifically we achieve intermodal phase matching to the HE13 higher order mode at the harmonic wavelength and found clear indications of a non-instantaneous molecular contribution to the total nonlinearity in the spectral broadening of the pump. Spectral power evolution and efficiency of the conversion process is studied for all pulse parameters, while we found the greatest photon yield for the longest pulses as well as an unexpected blue-shift of the third harmonic wavelength with increasing pump power. Our results provide the basis for future studies aiming at using this tunable fiber platform with a sophisticated nonlinear response in the context of harmonic generation. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Loading...
Thumbnail Image
Item

Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum

2021, Schaarschmidt, Kay, Kobelke, Jens, Nolte, Stefan, Meyer, Tobias, Schmidt, Markus A.

We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].