Search Results

Now showing 1 - 3 of 3
  • Item
    Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop Coating Deposition for Clinical Application
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Huang, Jing; Ali, Nairveen; Quansah, Elsie; Guo, Shuxia; Noutsias, Michel; Meyer-Zedler, Tobias; Bocklitz, Thomas; Popp, Jürgen; Neugebauer, Ute; Ramoji, Anuradha
    In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.
  • Item
    Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2023) Quansah, Elsie; Gardey, Elena; Ramoji, Anuradha; Meyer-Zedler, Tobias; Goehrig, Bianca; Heutelbeck, Astrid; Hoeppener, Stephanie; Schmitt, Michael; Waldner, Maximillian; Stallmach, Andreas; Popp, Jürgen
    The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.
  • Item
    Label-free multimodal imaging of infected Galleria mellonella larvae
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Quansah, Elsie; Ramoji, Anuradha; Thieme, Lara; Mirza, Kamran; Goering, Bianca; Makarewicz, Oliwia; Heutelbeck, Astrid; Meyer-Zedler, Tobias; Pletz, Mathias W.; Schmitt, Michael; Popp, Jürgen
    Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.