Search Results

Now showing 1 - 10 of 94
  • Item
    A discrete variational principle for rate-independent evolution
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Mielke, Alexander; Stefanelli, Ulisse
    We develop a global-in-time variational approach to the time-discretization of rate-independent processes. In particular, we investigate a discrete version of the variational principle based on the weighted energy-dissipation functional introduced by A. Mielke and M. Ortiz in ESAIM Control Optim. Calc. Var., 2008. We prove the conditional convergence of time-discrete approximate minimizers to energetic solutions of the time-continuous problem. Moreover, the convergence result is combined with approximation and relaxation. For a fixed partition the functional is shown to have an asymptotic development by Gamma convergence, cf. G. Anzellotti and S. Baldo (Appl. Math. Optim., 1993), in the limit of vanishing viscosity.
  • Item
    Crack growth in polyconvex materials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Knees, Dorothee; Zanini, Chiara; Mielke, Alexander
    We discuss a model for crack propagation in an elastic body, where the crack path is described a-priori. In particular, we develop in the framework of finite-strain elasticity a rate-independent model for crack evolution which is based on the Griffith fracture criterion. Due to the nonuniqueness of minimizing deformations, the energy-release rate is no longer continuous with respect to time and the position of the crack tip. Thus, the model is formulated in terms of the Clarke differential of the energy, generalizing the classical crack evolution models for elasticity with strictly convex energies. We prove the existence of solutions for our model and also the existence of special solutions, where only certain extremal points of the Clarke differential are allowed.
  • Item
    Modeling solutions with jumps for rate-independent systems on metric spaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    Rate-independent systems allow for solutions with jumps that need additional modeling. Here we suggest a formulation that arises as limit of viscous regularization of the solutions in the extended state space. Hence, our parametrized metric solutions of a rate-independent system are absolutely continuous mappings from a parameter interval into the extended state space. Jumps appear as generalized gradient flows during which the time is constant. The closely related notion of BV solutions is developed afterwards. Our approach is based on the abstract theory of generalized gradient flows in metric spaces, and comparison with other notions of solutions is given.
  • Item
    Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Mielke, Alexander; Petrov, Adrien; Martins, João A.C.
    This paper discusses the convergence of kinetic variational inequalities to rate-independent quasi-static variational inequalities. Mathematical formulations as well as existence and uniqueness results for kinetic and rate-independent quasi-static problems are provided. Sharp a priori estimates for the kinetic problem are derived that imply that the kinetic solutions converge to the rate-independent ones, when the size of initial perturbations and the rate of application of the forces tends to 0. An application to three-dimensional elastic-plastic systems with hardening is given.
  • Item
    Reverse approximation of energetic solutions to rate-independent processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Mielke, Alexander; Rindler, Filip
    Energetic solutions to rate-independent processes are usually constructed via time-incremental minimization problems. In this work we show that all energetic solutions can be approximated by incremental problems if we allow approximate minimizers, where the error in minimization has to be of the order of the time step. Moreover, we study sequences of problems where the energy functionals have a Gamma limit.
  • Item
    Damage of nonlinearly elastic materials at small strain : existence and regularity results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Thomas, Marita; Mielke, Alexander
    Literaturverz. S. 31 In this paper an existence result for energetic solutions of rate-independent damage processes is established and the temporal regularity of the solution is discussed. We consider a body consisting of a physically nonlinearly elastic material undergoing small deformations and partial damage. The present work is a generalization of [Mielke-Roubicek 2006] concerning the properties of the stored elastic energy density as well as the suitable Sobolev space for the damage variable: While previous work assumes that the damage variable z satisfies z ? W^1,r (Omega) with r>d for Omega ? R^d, we can handle the case r>1 by a new technique for the construction of joint recovery sequences. Moreover, this work generalizes the temporal regularity results to physically nonlinearly elastic materials by analyzing Lipschitz- and Hölder-continuity of solutions with respect to time.
  • Item
    High-frequency averaging in semi-classical Hartree-type equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Giannoulis, Johannes; Mielke, Alexander; Sparber, Christof
    We investigate the asymptotic behavior of solutions to semi-classical Schröodinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.
  • Item
    Weighted energy-dissipation functionals for gradient flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Stefanelli, Ulisse
    We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz in ``A class of minimum principles for characterizing the trajectories of dissipative systems''. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from S. Conti and M. Ortiz ``Minimum principles for the trajectories of systems governed by rate problems'
  • Item
    Padé approximant for refractive index and nonlocal envelope equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Amiranashvili, Shalva; Mielke, Alexander; Bandelow, Uwe
    Padé approximant is superior to Taylor expansion when functions contain poles. This is especially important for response functions in complex frequency domain, where singularities are present and intimately related to resonances and absorption. Therefore we introduce a diagonal Padé approximant for the complex refractive index and apply it to the description of short optical pulses. This yields a new nonlocal envelope equation for pulse propagation. The model offers a global representation of arbitrary medium dispersion and absorption, e.g., the fulfillment of the Kramers-Kronig relation can be established. In practice, the model yields an adequate description of spectrally broad pulses for which the polynomial dispersion operator diverges and can induce huge errors.
  • Item
    BV solutions and viscosity approximations of rate-independent systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time-discretized viscous approximations and establish various properties of the limiting $BV$ solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.