Search Results

Now showing 1 - 3 of 3
  • Item
    On the vanishing viscosity limit in parabolic systems with rate independent dissipation terms
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Mielke, Alexander; Zelik, Sergej V.
    We consider quasilinear parabolic systems with a nonsmooth rate-independent dissipation term in the limit of very slow loading rates, or equivalently with fixed loading and vanishing viscosity $varepsilon>0$. Because for nonconvex energies the solutions will develop jumps, we consider the vanishing-viscosity limit for the graphs of the solutions in the extended state space in arclength parametrization, where the norm associated with the viscosity is used to keep the subdifferential structure of the problem. A crucial point in the analysis are new a priori estimates that are rate independent and that allows us to show that the total length of the graph remains bounded in the vanishing-viscosity limit. To derive these estimates we combine parabolic regularity estimates with ideas from rate-independent systems
  • Item
    Differential, energetic, and metric formulations for rate-independent processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander
    We consider different solution concepts for rate-independent systems. This includes energetic solutions in the topological setting and differentiable, local, parametrized and BV solutions in the Banach-space setting. The latter two solution concepts rely on the method of vanishing viscosity, in which solutions of the rate-independent system are defined as limits of solutions of systems with small viscosity. Finally, we also show how the theory of metric evolutionary systems can be used to define parametrized and BV solutions in metric spaces.
  • Item
    BV solutions and viscosity approximations of rate-independent systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time-discretized viscous approximations and establish various properties of the limiting $BV$ solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.