Search Results

Now showing 1 - 1 of 1
  • Item
    Coexistence of Hamiltonian-like and dissipative dynamics in chains of coupled phase oscillators with skew-symmetric coupling
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Burylko, Oleksandr; Mielke, Alexander; Wolfrum, Matthias; Yanchuk, Serhiy
    We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is skew-symmetric, i.e. when the anisotropy is balanced in a specific way, the system shows robustly a coexistence of Hamiltonian-like and dissipative regions in the phase space. We relate this phenomenon to the time-reversibility property of the system. The geometry of low-dimensional systems up to five oscillators is described in detail. In particular, we show that the boundary between the dissipative and Hamiltonian-like regions consists of families of heteroclinic connections. For larger chains with skew-symmetric coupling, some sufficient conditions for the coexistence are provided, and in the limit of N oscillators, we formally derive an amplitude equation for solutions in the neighborhood of the synchronous solution. It has the form of a nonlinear Schrödinger equation and describes the Hamiltonian-like region existing around the synchronous state similarly to the case of finite rings.