Search Results

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Item

On evolutionary [Gamma]-convergence for gradient systems : in memory of Eduard, Waldemar, and Elli Mielke

2014, Mielke, Alexander

In these notes we discuss general approaches for rigorously deriving limits of generalized gradient flows. Our point of view is that a generalized gradient system is defined in terms of two functionals, namely the energy functional E and the dissipation potential R or the associated dissipation distance. We assume that the functionals depend on a small parameter and that the associated gradient systems have solutions u. We investigate the question under which conditions the limits u of (subsequences of) the solutions u are solutions of the gradient system generated by the [Gamma]-limits E0 and R0. Here the choice of the right topology will be crucial awell as additional structural conditions. We cover classical gradient systems, where R is quadratic, and rate-independent systems as well as the passage from classical gradient to rate-independent systems. Various examples, such as periodic homogenization, are used to illustrate the abstract concepts and results.