Search Results

Now showing 1 - 2 of 2
  • Item
    An evolutionary elastoplastic plate model derived via Gamma-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Liero, Matthias; Mielke, Alexander
    This paper is devoted to dimension reduction for linearized elastoplasticity in the rate-independent case. The reference configuration of the three-dimensional elastoplastic body has a two-dimensional middle surface and a positive but small thickness. Under suitable scalings we derive a limiting model for the case in which the thickness of the plate tends to 0. This model contains membrane and plate deformations (linear Kirchhoff--Love plate), which are coupled via plastic strains. We establish strong convergence of the solutions in the natural energy space. The analysis uses an abstract Gamma-convergence theory for rate-independent evolutionary systems that is based on the notion of energetic solutions. This concept is formulated via an energy-storage functional and a dissipation functional, such that energetic solutions are defined in terms of a stability condition and an energy balance. The Mosco convergence of the quadratic energy-storage functional follows the arguments of the elastic case. To handle the evolutionary situation the interplay with the dissipation functional is controlled by cancellation properties for Mosco-convergent quadratic energies
  • Item
    From discrete visco-elasticity to continuum rate-independent plasticity : rigorous results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Mielke, Alexander; Truskinovsky, Lev
    We show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete to continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic solid transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize ideas we employ in our proofs the simplest prototypical system describing transformational plasticity of shape-memory alloys. The approach, however, is sufficiently general and can be used for similar reductions in the cases of more general plasticity and damage models.