Search Results

Now showing 1 - 5 of 5
  • Item
    Exploring families of energy-dissipation landscapes via tilting: three types of EDP convergence
    (Berlin ; Heidelberg : Springer, 2021) Mielke, Alexander; Montefusco, Alberto; Peletier, Mark A.
    We introduce two new concepts of convergence of gradient systems (Q,Eε,Rε) to a limiting gradient system (Q,E0,R0). These new concepts are called ‘EDP convergence with tilting’ and ‘contact–EDP convergence with tilting.’ Both are based on the energy-dissipation-principle (EDP) formulation of solutions of gradient systems and can be seen as refinements of the Gamma-convergence for gradient flows first introduced by Sandier and Serfaty. The two new concepts are constructed in order to avoid the ‘unnatural’ limiting gradient structures that sometimes arise as limits in EDP convergence. EDP convergence with tilting is a strengthening of EDP convergence by requiring EDP convergence for a full family of ‘tilted’ copies of (Q,Eε,Rε). It avoids unnatural limiting gradient structures, but many interesting systems are non-convergent according to this concept. Contact–EDP convergence with tilting is a relaxation of EDP convergence with tilting and still avoids unnatural limits but applies to a broader class of sequences (Q,Eε,Rε). In this paper, we define these concepts, study their properties, and connect them with classical EDP convergence. We illustrate the different concepts on a number of test problems.
  • Item
    Symmetries in transmission electron microscopy imaging of crystals with strain
    (London : [Verlag nicht ermittelbar], 2022) Koprucki, Thomas; Maltsi, Anieza; Mielke, Alexander
    Transmission electron microscopy (TEM) images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries, we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process, we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.
  • Item
    Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Maas, Jan; Mielke, Alexander
    We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.
  • Item
    EDP-convergence for nonlinear fast–slow reaction systems with detailed balance*
    (Bristol : IOP Publ., 2021) Mielke, Alexander; Peletier, Mark A.; Stephan, Artur
    We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP-convergence, i.e. convergence in the sense of the energy-dissipation principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.
  • Item
    Thermoviscoelasticity in Kelvin–Voigt Rheology at Large Strains
    (Berlin ; Heidelberg : Springer, 2020) Mielke, Alexander; Roubíček, Tomáš
    The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large strain is formulated in the reference configuration by using the concept of the second-grade nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and respect positivity of the determinant of the deformation gradient. The heat transfer is governed by the Fourier law in the actual deformed configuration, which leads to a nontrivial description when pulled back to the reference configuration. The existence of weak solutions in the quasistatic setting, that is inertial forces are ignored, is shown by time discretization. © 2020, The Author(s).