Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

A phenomenology of new particle formation (NPF) at 13 European sites

2021, Bousiotis, Dimitrios, Pope, Francis D., Beddows, David C. S., Dall'Osto, Manuel, Massling, Andreas, Nøjgaard, Jakob Klenø, Nordstrøm, Claus, Niemi, Jarkko V., Portin, Harri, Petäjä, Tuukka, Perez, Noemi, Alastuey, Andrés, Querol, Xavier, Kouvarakis, Giorgos, Mihalopoulos, Nikos, Vratolis, Stergios, Eleftheriadis, Konstantinos, Wiedensohler, Alfred, Weinhold, Kay, Merkel, Maik, Tuch, Thomas, Harrison, Roy M.

New particle formation (NPF) events occur almost everywhere in the world and can play an important role as a particle source. The frequency and characteristics of NPF events vary spatially, and this variability is yet to be fully understood. In the present study, long-term particle size distribution datasets (minimum of 3 years) from 13 sites of various land uses and climates from across Europe were studied, and NPF events, deriving from secondary formation and not traffic-related nucleation, were extracted and analysed. The frequency of NPF events was consistently found to be higher at rural background sites, while the growth and formation rates of newly formed particles were higher at roadsides (though in many cases differences between the sites were small), underlining the importance of the abundance of condensable compounds of anthropogenic origin found there. The growth rate was higher in summer at all rural background sites studied. The urban background sites presented the highest uncertainty due to greater variability compared to the other two types of site. The origin of incoming air masses and the specific conditions associated with them greatly affect the characteristics of NPF events. In general, cleaner air masses present higher probability for NPF events, while the more polluted ones show higher growth rates. However, different patterns of NPF events were found, even at sites in close proximity (<ĝ€¯200ĝ€¯km), due to the different local conditions at each site. Region-wide events were also studied and were found to be associated with the same conditions as local events, although some variability was found which was associated with the different seasonality of the events at two neighbouring sites. NPF events were responsible for an increase in the number concentration of ultrafine particles of more than 400ĝ€¯% at rural background sites on the day of their occurrence. The degree of enhancement was less at urban sites due to the increased contribution of other sources within the urban environment. It is evident that, while some variables (such as solar radiation intensity, relative humidity, or the concentrations of specific pollutants) appear to have a similar influence on NPF events across all sites, it is impossible to predict the characteristics of NPF events at a site using just these variables, due to the crucial role of local conditions. © Author(s) 2021.

Loading...
Thumbnail Image
Item

Multidecadal trend analysis of in situ aerosol radiative properties around the world

2020, Collaud Coen, Martine, Andrews, Elisabeth, Alastuey, Andrés, Petkov Arsov, Todor, Backman, John, Brem, Benjamin T., Bukowiecki, Nicolas, Couret, Cédric, Eleftheriadis, Konstantinos, Flentje, Harald, Fiebig, Markus, Gysel-Beer, Martin, Hand, Jenny L., Hoffer, András, Hooda, Rakesh, Hueglin, Christoph, Joubert, Warren, Keywood, Melita, Eun Kim, Jeong, Kim, Sang-Woo, Labuschagne, Casper, Lin, Neng-Huei, Lin, Yong, Lund Myhre, Cathrine, Luoma, Krista, Lyamani, Hassan, Marinoni, Angela, Mayol-Bracero, Olga L., Mihalopoulos, Nikos, Pandolfi, Marco, Prats, Natalia, Prenni, Anthony J., Putaud, Jean-Philippe, Ries, Ludwig, Reisen, Fabienne, Sellegri, Karine, Sharma, Sangeeta, Sheridan, Patrick, Sherman, James Patrick, Sun, Junying, Titos, Gloria, Torres, Elvis, Tuch, Thomas, Weller, Rolf, Wiedensohler, Alfred, Zieger, Paul, Laj, Paolo

In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient - there is a shift to statistically significant negative trends in 2009-2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes. © 2020 Royal Society of Chemistry. All rights reserved.

Loading...
Thumbnail Image
Item

Comparison of particle number size distribution trends in ground measurements and climate models

2022, Leinonen, Ville, Kokkola, Harri, Yli-Juuti, Taina, Mielonen, Tero, Kühn, Thomas, Nieminen, Tuomo, Heikkinen, Simo, Miinalainen, Tuuli, Bergman, Tommi, Carslaw, Ken, Decesari, Stefano, Fiebig, Markus, Hussein, Tareq, Kivekäs, Niku, Krejci, Radovan, Kulmala, Markku, Leskinen, Ari, Massling, Andreas, Mihalopoulos, Nikos, Mulcahy, Jane P., Noe, Steffen M., van Noije, Twan, O'Connor, Fiona M., O'Dowd, Colin, Olivie, Dirk, Pernov, Jakob B., Petäjä, Tuukka, Seland, Øyvind, Schulz, Michael, Scott, Catherine E., Skov, Henrik, Swietlicki, Erik, Tuch, Thomas, Wiedensohler, Alfred, Virtanen, Annele, Mikkonen, Santtu

Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.

Loading...
Thumbnail Image
Item

A European aerosol phenomenology - 6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites

2018, Pandolfi, Marco, Alados-Arboledas, Lucas, Alastuey, Andrés, Andrade, Marcos, Angelov, Christo, Artiñano, Begoña, Backman, John, Baltensperger, Urs, Bonasoni, Paolo, Bukowiecki, Nicolas, Collaud Coen, Martine, Conil, Sébastien, Coz, Esther, Crenn, Vincent, Dudoitis, Vadimas, Ealo, Marina, Eleftheriadis, Kostas, Favez, Olivier, Fetfatzis, Prodromos, Fiebig, Markus, Flentje, Harald, Ginot, Patrick, Gysel, Martin, Henzing, Bas, Hoffer, Andras, Holubova Smejkalova, Adela, Kalapov, Ivo, Kalivitis, Nikos, Kouvarakis, Giorgos, Kristensson, Adam, Kulmala, Markku, Lihavainen, Heikki, Lunder, Chris, Luoma, Krista, Lyamani, Hassan, Marinoni, Angela, Mihalopoulos, Nikos, Moerman, Marcel, Nicolas, José, O'Dowd, Colin, Petäjä, Tuukka, Petit, Jean-Eudes, Pichon, Jean Marc, Prokopciuk, Nina, Putaud, Jean-Philippe, Rodríguez, Sergio, Sciare, Jean, Sellegri, Karine, Swietlicki, Erik, Titos, Gloria, Tuch, Thomas, Tunved, Peter, Ulevicius, Vidmantas, Vaishya, Aditya, Vana, Milan, Virkkula, Aki, Vratolis, Stergios, Weingartner, Ernest, Wiedensohler, Alfred, Laj, Paolo

This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.

Loading...
Thumbnail Image
Item

Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems

2017, Schrod, Jann, Weber, Daniel, Drücke, Jaqueline, Keleshis, Christos, Pikridas, Michael, Ebert, Martin, Cvetković, Bojan, Nickovic, Slobodan, Marinou, Eleni, Baars, Holger, Ansmann, Albert, Vrekoussis, Mihalis, Mihalopoulos, Nikos, Sciare, Jean, Curtius, Joachim, Bingemer, Heinz G.

During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from -20 to -30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L-1 were measured at -30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.

Loading...
Thumbnail Image
Item

Phenomenology of ultrafine particle concentrations and size distribution across urban Europe

2023, Trechera, Pedro, Garcia-Marlès, Meritxell, Liu, Xiansheng, Reche, Cristina, Pérez, Noemí, Savadkoohi, Marjan, Beddows, David, Salma, Imre, Vörösmarty, Máté, Casans, Andrea, Casquero-Vera, Juan Andrés, Hueglin, Christoph, Marchand, Nicolas, Chazeau, Benjamin, Gille, Grégory, Kalkavouras, Panayiotis, Mihalopoulos, Nikos, Ondracek, Jakub, Zikova, Nadia, Niemi, Jarkko V., Manninen, Hanna E., Green, David C., Tremper, Anja H., Norman, Michael, Vratolis, Stergios, Eleftheriadis, Konstantinos, Gómez-Moreno, Francisco J., Alonso-Blanco, Elisabeth, Gerwig, Holger, Wiedensohler, Alfred, Weinhold, Kay, Merkel, Maik, Bastian, Susanne, Petit, Jean-Eudes, Favez, Olivier, Crumeyrolle, Suzanne, Ferlay, Nicolas, Martins Dos Santos, Sebastiao, Putaud, Jean-Philippe, Timonen, Hilkka, Lampilahti, Janne, Asbach, Christof, Wolf, Carmen, Kaminski, Heinz, Altug, Hicran, Hoffmann, Barbara, Rich, David Q., Pandolfi, Marco, Harrison, Roy M., Hopke, Philip K., Petäjä, Tuukka, Alastuey, Andrés, Querol, Xavier

The 2017–2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.