Search Results

Now showing 1 - 2 of 2
  • Item
    Freestanding MXene‐based macroforms for electrochemical energy storage applications
    (Hoboken, NJ : Wiley, 2023) Lu, Qiongqiong; Liu, Congcong; Zhao, Yirong; Pan, Wengao; Xie, Kun; Yue, Pengfei; Zhang, Guoshang; Omar, Ahmad; Liu, Lixiang; Yu, Minghao; Mikhailova, Daria
    Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network, strong mechanical strength, and customizable surface chemistries derived from MXene nanosheets. This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets, strategies for structure design and surface medication, surface modification, and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures. The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications, offering a detailed discussion on the significant progress achieved thus far. Notably, the correlation between the macroform's structural attributes and its performance characteristics is thoroughly explored, shedding light on the critical factors influencing efficiency and durability. Despite the remarkable development, the review also highlights the existing challenges and presents future perspectives for freestanding MXene-based macroforms in the realms of high-performance energy storage devices. By addressing these challenges and leveraging emerging opportunities, the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.
  • Item
    Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries
    (Amsterdam [u.a.] : Elsevier, 2021) Soltani, Niloofar; Bahrami, Amin; Giebeler, Lars; Gemming, Thomas; Mikhailova, Daria
    Rechargeable lithium-ion batteries (LIBs) are one of the most promising alternatives to effectively bypass fossil fuels. However, long-term energy application of LIBs could be restricted in the future due to the increased production cost of LIB arising from the shortage and inaccessibility of Li in the Earth's crust. Na or K have been considered as substitutes for Li but in spite of their natural abundance, they suffer from low gravimetric/volumetric energy density. An alternative to increase the efficiency of sodium-ion battery (SIBs) and potassium-ion battery (KIBs) is to focus on finding the high‐performing negative electrode, the anode. The large volume changes of alloying and conversion type anodes for KIBs and SIBs make hard carbons to a better option on this regard than usual graphitic carbons, but a key obstacle is the reliance on unsustainable sources. Thus, biomass-derived carbon could offer a promising alternative, and it has indeed been in the focus of much recent work. This review highlights the recent advances in using carbon extracted from various biomass sources in rechargeable Li-, Na-, and K-ion batteries. Maximizing the energy and power densities as well as the lifetime of carbon anodes require an exploration of the right balance between carbon structures, pore morphology, chemical composition and alkali metal-ion storage. Thus, in this review, first, we take stock of key challenges and opportunities to extract carbon from various plants structural components and identify the extracted carbon structure compared to graphite-like structure. Then, we provide an overview on morphological and structural modification of the extracted carbons. Finally, we show how the physicochemical properties, structural alignment and morphological variation of the biomass-derived carbon can affect the storage mechanism and electrochemical performance. The extensive overview of this topic provided here is expected to stimulate further work on environmentally friendly battery design and towards the optimization of the battery performance. Electrode materials in alkali-metal-ion batteries that are based on biomass-derived carbon may allow not only a technical breakthrough, but also an ethically and socially acceptable product.