Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Above-threshold ionization in a bicircular field: Quantum orbits unfolding in a plane

2017, Becker, W., Milošević, D.B.

Above-threshold ionization (ATI) of atoms by a strong bicircular laser field is investigated using the strong-field approximation and the quantum-orbit theory. The bicircular field consists of two coplanar counterrotating circularly polarized fields with a frequency ratio of 2:1. The velocity map of the angle-resolved ATI spectra, both for direct and rescattered electrons, reflects the shape of a parametric plot of the bicircular field and its symmetries. It is shown that the main characteristics of the ATI spectra can be explained using only a few quantum orbits having short travel times. We also analyze a recently discovered [Phys. Rev. A 93, 052402(R) (2016)] bicircular-field-induced spin asymmetry of the ATI electrons and show that the momentum dependence of the spin-asymmetry parameter is stronger for longer wavelengths.

Loading...
Thumbnail Image
Item

Interference structure of above-threshold ionization versus above-threshold detachment

2012, Korneev, Ph.A., Popruzhenko, S.V., Goreslavski, S.P., Becker, W., Paulus, G.G., Fetić, B., Milošević, D.B.

Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.

Loading...
Thumbnail Image
Item

Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields

2008, Kling, M.F., Rauschenberger, J., Verhoef, A.J., Hasović, E., Uphues, T., Milošević, D.B., Muller, H.G., Vrakking, M.J.J.

Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Unified description of low-order above-threshold ionization on and off axis

2016, Becker, W., Milošević, D.B.

A recently developed unified description of low-order above-threshold ionization (Becker et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204022; 2015 J. Phys. B: At. Mol. Opt. Phys. 48 151001) is revisited and extended. By considering the rescattering electron energies and angles at the classical cutoffs and the contributions of particular quantum-orbit solutions, it is shown that summing both the backward- and the forward-scattering contributions, within the low-frequency approximation, it is possible to reproduce the observed features of the ATI spectra both for low and high energies and both on and off the laser-polarization axis in the momentum plane.

Loading...
Thumbnail Image
Item

Interference in strong-field ionization of a two-centre atomic system

2008, Ansari, Z., Böttcher, M., Manschwetus, B., Rottke, H., Sandner, W., Verhoef, A., Lezius, M., Paulus, G.G., Saenz, A., Milošević, D.B.

Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.