Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies

2020, Gazibegović-Busuladžić, A., Busuladžić, M., Čerkić, A., Hasović, E., Becker, W., Milošević, D.B.

We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.

Loading...
Thumbnail Image
Item

High-order harmonic generation by polyatomic molecules

2017, Odžak, S., Hasović, E., Milošević, D.B.

We present a theory of high-order harmonic generation by arbitrary polyatomic molecules based on the molecular strong-field approximation (MSFA) in the framework of the S-matrix theory. A polyatomic molecule is modeled by an (N + 1)-particle system, which consists of N heavy atomic (ionic) centers and an electron. We derived various versions (with or without the dressing of the initial and/or final molecular state) of the MSFA. The general expression for the T-matrix element takes a simple form for neutral polyatomic molecules. We show the existence of the interference minima in the harmonic spectrum and explain these minima as a multiple-slit type of interference. This is illustrated by numerical examples for the nitrous oxide (N2O) molecule exposed to strong linearly polarized laser field.

Loading...
Thumbnail Image
Item

Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields

2008, Kling, M.F., Rauschenberger, J., Verhoef, A.J., Hasović, E., Uphues, T., Milošević, D.B., Muller, H.G., Vrakking, M.J.J.

Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Unified description of low-order above-threshold ionization on and off axis

2016, Becker, W., Milošević, D.B.

A recently developed unified description of low-order above-threshold ionization (Becker et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204022; 2015 J. Phys. B: At. Mol. Opt. Phys. 48 151001) is revisited and extended. By considering the rescattering electron energies and angles at the classical cutoffs and the contributions of particular quantum-orbit solutions, it is shown that summing both the backward- and the forward-scattering contributions, within the low-frequency approximation, it is possible to reproduce the observed features of the ATI spectra both for low and high energies and both on and off the laser-polarization axis in the momentum plane.

Loading...
Thumbnail Image
Item

Generation of elliptically polarized soft x rays using high-order harmonic generation with orthogonal two-color laser fields

2020, Milošević, D.B., Becker, W.

High-order harmonic generation by orthogonally polarized two-color (OTC) laser fields is analysed using strong-field approximation and quantum-orbit theory. Results for the field components frequency ratio of 2:1 and 3:1 are presented and compared. We have shown that, depending on the relative phase between the field components, the shape of the high-harmonic spectrum can be very different from that obtained by a monochromatic linearly polarized laser field. It is also shown that it is possible to generate elliptically polarized high-order harmonics with very high photon energies using OTC laser field with the frequency ratio of 3:1 and a long fundamental wavelength. An effective relative phase control of the harmonic emission is demonstrated. The obtained results are explained using the quantum-orbit theory. © Published under licence by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Electron Rescattering in a Bicircular Laser Field

2017, Hasović, E., Becker, W., Milošević, D.B.

We investigate high-order above-threshold ionization (HATI) of krypton atoms by a bicircular laser field, which consists of two coplanar co- or counter-rotating circularly polarized fields of frequencies rw and sw. We show that the photoelectron spectra in the HATI process, presented in the momentum plane, exhibit the same discrete rotational symmetry as the driving field. We also analyze HATI spectra for various combinations of the intensities of two field components for co- and counter-rotating fields. We find that the appearance of high-energy plateau for the counter-rotating case is vary sensitive to the laser intensity ratio, while the plateau is always absent for the co-rotating bicircular field.

Loading...
Thumbnail Image
Item

Interference in strong-field ionization of a two-centre atomic system

2008, Ansari, Z., Böttcher, M., Manschwetus, B., Rottke, H., Sandner, W., Verhoef, A., Lezius, M., Paulus, G.G., Saenz, A., Milošević, D.B.

Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

The influence of the driving-bicircular-field component intensities on the helicities of emitted high-order harmonics

2019, Milošević, D.B.

High-order harmonics generated by a linearly polarized laser field are also linearly polarized. Having in mind that for various application, such as the exploration of magnetic materials, chiral molecules etc., we need circularly polarized high harmonics which serve as coherent soft x-rays, we explore high-order harmonic generation by the so-called bicircular laser field. This field consists of two coplanar counter-rotating circularly polarized fields of different frequencies equal to integer multiples of a fundamental frequency ω. High harmonics generated by such field are circularly polarized with helicity alternating between +1 and −1. Combining a group of such harmonics, instead of obtaining a circularly polarized attosecond pulse train, one obtains a pulse with unusual polarization properties. But, if the harmonics of particular helicity are stronger, i.e., if we have helicity asymmetry in a high-harmonic energy interval, then it is possible to generate an elliptical or even circular pulse train. We theoretically investigated a wide range of bicircular field-component intensities (I1 and I2) and found regions where both the harmonic intensity is high and the helicity asymmetry is large. Particular attention is devoted to the ω−2ω and ω−3ω bicircular fields and atoms having the s and p ground states. In our calculations we use strong-field approximation and quantum-orbit theory. We show that, even in the extreme case of I2 = 8I1, for an ω−3ω bicircular field, high-order harmonic generation is more efficient than in the I2 = I1 case. The obtained results are explained analyzing the relevant electron trajectories and velocities, which follow from the quantum-orbit theory. For the atoms having p ground state the helicity asymmetry parameter is large for a wide range of high-harmonic photon energies, while for the atoms having s ground state the helicity asymmetry parameter can be large only for low harmonics. We confirm this by averaging the obtained results over the intensity distribution in the laser focus.

Loading...
Thumbnail Image
Item

Above-threshold ionization in a bicircular field: Quantum orbits unfolding in a plane

2017, Becker, W., Milošević, D.B.

Above-threshold ionization (ATI) of atoms by a strong bicircular laser field is investigated using the strong-field approximation and the quantum-orbit theory. The bicircular field consists of two coplanar counterrotating circularly polarized fields with a frequency ratio of 2:1. The velocity map of the angle-resolved ATI spectra, both for direct and rescattered electrons, reflects the shape of a parametric plot of the bicircular field and its symmetries. It is shown that the main characteristics of the ATI spectra can be explained using only a few quantum orbits having short travel times. We also analyze a recently discovered [Phys. Rev. A 93, 052402(R) (2016)] bicircular-field-induced spin asymmetry of the ATI electrons and show that the momentum dependence of the spin-asymmetry parameter is stronger for longer wavelengths.

Loading...
Thumbnail Image
Item

Interference structure of above-threshold ionization versus above-threshold detachment

2012, Korneev, Ph.A., Popruzhenko, S.V., Goreslavski, S.P., Becker, W., Paulus, G.G., Fetić, B., Milošević, D.B.

Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.