Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios

2018, Vicedo-Cabrera, Ana Maria, Guo, Yuming, Sera, Francesco, Huber, Veronika, Schleussner, Carl-Friedrich, Mitchell, Dann, Tong, Shilu, de Sousa Zanotti Stagliorio Coelho, Micheline, Saldiva, Paulo Hilario Nascimento, Lavigne, Eric, Matus Correa, Patricia, Valdes Ortega, Nicolas, Kan, Haidong, Osorio, Samuel, Kyselý, Jan, Urban, Aleš, Jaakkola, Jouni J. K., Ryti, Niilo R. I., Pascal, Mathilde, Goodman, Patrick G., Zeka, Ariana, Michelozzi, Paola, Scortichini, Matteo, Hashizume, Masahiro, Honda, Yasushi, Hurtado-Diaz, Magali, Cruz, Julio, Seposo, Xerxes, Kim, Ho, Tobias, Aurelio, Íñiguez, Carmen, Forsberg, Bertil, Åström, Daniel Oudin, Ragettli, Martina S., Röösli, Martin, Guo, Yue Leon, Wu, Chang-fu, Zanobetti, Antonella, Schwartz, Joel, Bell, Michelle L., Dang, Tran Ngoc, Do Van, Dung, Heaviside, Clare, Vardoulakis, Sotiris, Hajat, Shakoor, Haines, Andy, Armstrong, Ben, Ebi, Kristie L., Gasparrini, Antonio

The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to “hold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C”. The 1.5 °C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 °C) and more extreme GMT increases (3 and 4 °C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 °C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 °C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.

Loading...
Thumbnail Image
Item

Assessing changes in risk of amplified planetary waves in a warming world

2019, Huntingford, Chris, Mitchell, Dann, Kornhuber, Kai, Coumou, Dim, Osprey, Scott, Allen, Myles

Summer weather extremes are often associated with high-amplitude atmospheric planetary waves (Petoukhov et al., 2013). Such conditions lead to stationary weather patterns, triggering heat waves and sometimes prolonged intense rainfall. These wave events, referred to as periods of Quasi-Resonant Amplification (QRA), are relatively rare though and hence provide only a few data points in the meteorological record to analyse. Here, we use atmospheric models coupled to boundary conditions that have evolved slowly (i.e., climate), to supplement measurements. Specifically we assess altered probabilities of resonant episodes by employing a unique massive ensemble of atmosphere-only climate simulations to populate statistical distributions of event occurrence. We focus on amplified waves during the two most extreme European heat waves on record, in years 2003 and 2015 (Russo et al., 2015). These years are compared with other modelled recent years (1987–2011), and critically against a modelled world without climate change. We find that there are differences in the statistical characteristics of wave event likelihood between years, suggesting a strong dependence on the known and prescribed Sea Surface Temperature (SST) patterns. The differences are larger than those projected to have occurred under climate change since the pre-industrial period. However, this feature of small differences since pre-industrial is based on single large ensembles, with members consisting of a range of estimates of SST adjustment from pre-industrial to present. Such SST changes are from projections by a set of coupled atmosphere–ocean (AOGCM) climate models. When instead an ensemble for pre-industrial estimates is subdivided into simulations according to which AOGCM the SST changes are based on, we find differences in QRA occurrence. These differences suggest that to reliably estimate changes to extremes associated with altered amplification of planetary waves, and under future raised greenhouse gas concentrations, likely requires reductions in any spread of future modelled SST patterns. © 2019 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.