Search Results

Now showing 1 - 4 of 4
  • Item
    A new method for correcting temperature log profiles in low-enthalpy plays
    (Berlin ; Heidelberg [u.a.] : Springer Open, 2020) Schumacher, Sandra; Moeck, Inga
    Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment. © 2020, The Author(s).
  • Item
    Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching
    (Berlin ; Heidelberg : Springer, 2018) Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
  • Item
    Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data
    (Göttingen : Copernicus Publ., 2020) Shipilin, Vladimir; Tanner, David C.; von Hartmann, Hartwig; Moeck, Inga
    We use three-dimensional seismic reflection data from the southern German Molasse Basin to investigate the structural style and evolution of a geometrically decoupled fault network in close proximity to the Alpine deformation front. We recognise two fault arrays that are vertically separated by a clay-rich layer – lower normal faults and upper normal and reverse faults. A frontal thrust fault partially overprints the upper fault array. Analysis of seismic stratigraphy, syn-kinematic strata, throw distribution, and spatial relationships between faults suggest a multiphase fault evolution: (1) initiation of the lower normal faults in the Upper Jurassic carbonate platform during the early Oligocene, (2) development of the upper normal faults in the Cenozoic sediments during the late Oligocene, and (3) reverse reactivation of the upper normal faults and thrusting during the mid-Miocene. These distinct phases document the evolution of the stress field as the Alpine orogen propagated across the foreland. We postulate that interplay between the horizontal compression and vertical stresses due to the syn-sedimentary loading resulted in the intermittent normal faulting. The vertical stress gradients within the flexed foredeep defined the independent development of the upper faults above the lower faults, whereas mechanical behaviour of the clay-rich layer precluded the subsequent linkage of the fault arrays. The thrust fault must have been facilitated by the reverse reactivation of the upper normal faults, as its maximum displacement and extent correlate with the occurrence of these faults. We conclude that the evolving tectonic stresses were the primary mechanism of fault activation, whereas the mechanical stratigraphy and pre-existing structures locally governed the structural style.
  • Item
    Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten
    (Stuttgart : Schweizerbart, 2018) Mraz, Elena; Moeck, Inga; Bissmann, Silke; Hild, Stephan
    Mraz, E., Moeck, I., Bissmann, S. & Hild, S. (2018): Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. – Z. Dt. Ges. Geowiss., 169: 389–411, Stuttgart. The Bavarian Molasse Basin represents a peripheral foreland basin hosting abundant hydrothermal resources in 3–5 km deep Upper Jurassic carbonate rocks. Faults and facies play a major role in targeting production wells; however the kinematic evolution of fault zones and the classification of carbonate facies of the Upper Jurassic are still debated. At the geothermal prospect Mauerstetten in the Western Bavarian Molasse Basin, a geothermal well and a side track are drilled along and about 650 m off an ENE–WSW striking normal fault. A stratigraphy related fault throw analysis of six 2D seismic sections crossing this fault evidences multiphase normal faulting from Cretaceous to Upper Miocene with a major activity phase in the Oligocene. This fault, inactive since Upper Miocene, is presumably a fossil normal fault in the present-day stress field that has a maximum horizontal stress direction in N–S. Analysis of carbonate facies by thin section petrography of drill cuttings and geophysical borehole logs lead to two major conclusions: (i) the reservoir rock represents low permeable platform limestones, reef detritus and dolostones of the Franconian facies, and (ii) the fault consists of multiple normal faulting steps with higher permeability than in intact rock. This observation suggests a fracture controlled reservoir with permeable damage zones in a tight rock mass along reactivated normal faults.