Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

A new method for correcting temperature log profiles in low-enthalpy plays

2020, Schumacher, Sandra, Moeck, Inga

Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data

2020, Shipilin, Vladimir, Tanner, David C., von Hartmann, Hartwig, Moeck, Inga

We use three-dimensional seismic reflection data from the southern German Molasse Basin to investigate the structural style and evolution of a geometrically decoupled fault network in close proximity to the Alpine deformation front. We recognise two fault arrays that are vertically separated by a clay-rich layer – lower normal faults and upper normal and reverse faults. A frontal thrust fault partially overprints the upper fault array. Analysis of seismic stratigraphy, syn-kinematic strata, throw distribution, and spatial relationships between faults suggest a multiphase fault evolution: (1) initiation of the lower normal faults in the Upper Jurassic carbonate platform during the early Oligocene, (2) development of the upper normal faults in the Cenozoic sediments during the late Oligocene, and (3) reverse reactivation of the upper normal faults and thrusting during the mid-Miocene. These distinct phases document the evolution of the stress field as the Alpine orogen propagated across the foreland. We postulate that interplay between the horizontal compression and vertical stresses due to the syn-sedimentary loading resulted in the intermittent normal faulting. The vertical stress gradients within the flexed foredeep defined the independent development of the upper faults above the lower faults, whereas mechanical behaviour of the clay-rich layer precluded the subsequent linkage of the fault arrays. The thrust fault must have been facilitated by the reverse reactivation of the upper normal faults, as its maximum displacement and extent correlate with the occurrence of these faults. We conclude that the evolving tectonic stresses were the primary mechanism of fault activation, whereas the mechanical stratigraphy and pre-existing structures locally governed the structural style.

Loading...
Thumbnail Image
Item

Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

2018, Budach, Ingmar, Moeck, Inga, Lüschen, Ewald, Wolfgramm, Markus

The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

Loading...
Thumbnail Image
Item

Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten

2018, Mraz, Elena, Moeck, Inga, Bissmann, Silke, Hild, Stephan

Mraz, E., Moeck, I., Bissmann, S. & Hild, S. (2018): Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. – Z. Dt. Ges. Geowiss., 169: 389–411, Stuttgart. The Bavarian Molasse Basin represents a peripheral foreland basin hosting abundant hydrothermal resources in 3–5 km deep Upper Jurassic carbonate rocks. Faults and facies play a major role in targeting production wells; however the kinematic evolution of fault zones and the classification of carbonate facies of the Upper Jurassic are still debated. At the geothermal prospect Mauerstetten in the Western Bavarian Molasse Basin, a geothermal well and a side track are drilled along and about 650 m off an ENE–WSW striking normal fault. A stratigraphy related fault throw analysis of six 2D seismic sections crossing this fault evidences multiphase normal faulting from Cretaceous to Upper Miocene with a major activity phase in the Oligocene. This fault, inactive since Upper Miocene, is presumably a fossil normal fault in the present-day stress field that has a maximum horizontal stress direction in N–S. Analysis of carbonate facies by thin section petrography of drill cuttings and geophysical borehole logs lead to two major conclusions: (i) the reservoir rock represents low permeable platform limestones, reef detritus and dolostones of the Franconian facies, and (ii) the fault consists of multiple normal faulting steps with higher permeability than in intact rock. This observation suggests a fracture controlled reservoir with permeable damage zones in a tight rock mass along reactivated normal faults.

Loading...
Thumbnail Image
Item

Detailed Fluid Inclusion and Stable Isotope Analysis on Deep Carbonates from the North Alpine Foreland Basin to Constrain Paleofluid Evolution

2019, Mraz, Elena, Wolfgramm, Markus, Moeck, Inga, Thuro, Kurosch

The recent interest on environmentally friendly energy resources has increased the economic interest on the Upper Jurassic carbonate rocks in the North Alpine Foreland Basin, which serves as a hydrogeothermal reservoir. An economic reservoir use by geothermal fluid extraction and injection requires a decent understanding of porosity–permeability evolution of the deep laying Upper Jurassic strata at depths greater than 2000 m. The analysis of paleofluids caught in cements of the rock mass helps to determine the postdepositional reservoir evolution and fluid migration. Therefore, the high- and low-permeability areas of the Upper Jurassic in the North Alpine Foreland Basin referred to as Molasse Basin were analyzed by means of encountered postdepositional cements to determine the reservoir evolution. The cements were sampled at different hydrocarbon and geothermal wells, as well as at outcrops in the Franconian and Swabian Alb. To determine the composition and temperature of the paleofluids, fluid inclusions and cements of the Upper Jurassic carbonate rocks were analyzed by microthermometry and stable isotope measurements. Since drill cuttings are a rather available sample material compared to drill cores, a new microthermometry measurement method was achieved for the around 1 mm drill cuttings. Salinity and formation temperature of paleofluids in fluid inclusions and isotope data are consistent with previous studies and reveal a 5-stage evolution: the main cementation phases are composed of (I) the early diagenesis in limestones (200-400 m, 40-50°C), (II) early diagenetic dolomitization, and (III) burial dolomitization (1-2 km, II: 40-90°C; III: 70-100°C; 40 g/L NaCl equiv.), and (IV) late burial calcification (IIIa: 110-140°C, IIIb: 140-200°C) linked to tectonic features in the Molasse Basin. In the outcrop samples, a subsequent (V) cementation phase was determined controlled by karstification. In the southwest, an increase in salinity of the fluid inclusions in vein calcites, above the salinity of the Jurassic seawater, highlights the influence of basin fluids (diagenetic, evaporitic). In the other eastern wells, vein calcites have precipitated from a low saline fluid of around 10-20 g/L NaCl equiv. The low salinity and the isotope values support the theory of a continuous influence of descending meteoric fluids. Consequently, the Upper Jurassic seawater has been diluted by a meteoric fluid to a low saline fluid (<1 g/L), especially in areas with high permeability. Here, we show how a better understanding of cementation trajectory at depth can help to generate a better understanding of geothermal usability in deep carbonate reservoirs.