Search Results

Now showing 1 - 2 of 2
  • Item
    Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications
    (Weinheim : Wiley-VCH, 2018) Hensel, René; Moh, Karsten; Arzt, Eduard
    Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.
  • Item
    Tuning the Release Force of Microfibrillar Adhesives by Geometric Design
    (Weinheim : Wiley-VCH, 2022) Barnefske, Lena; Rundel, Fabian; Moh, Karsten; Hensel, René; Zhang, Xuan; Arzt, Eduard
    Switchable micropatterned adhesives exhibit high potential as novel resource-efficient grippers in future pick-and-place systems. In contrast with the adhesion acting during the “pick” phase, the release during the “place” phase has received little research attention so far. For objects smaller than typically 1 mm, release may become difficult as gravitational and inertial forces are no longer sufficient to allow shedding of the object. A compressive overload can initiate release by elastic buckling of the fibrils, but the switching ratio (ratio between high and low adhesion force) is typically only 2–3. In this work, new microfibrillar designs are reported exhibiting directional buckling with high switching ratios in the order of 20. Their functionality is illustrated by in situ optical observation of the contact signatures. Such micropatterns can enable the successful release of small objects with high placement accuracy.