Search Results

Now showing 1 - 2 of 2
  • Item
    Formaldehyde-free curing of cotton cellulose fabrics in anhydrous media
    (New York, NY : Wiley, 2020) Mommer, Stefan; Kurniadi, Juliana; Keul, Helmut; Möller, Martin
    The effect of formaldehyde-free curing on standard cotton cellulose fabrics in anhydrous media is studied. Different crosslinkers are applied via (1) a pad-cure-dry process (solid/liquid) and (2) in a vapor chamber (solid/gas). The performance of each crosslinker and set of conditions is assessed by measuring dry crease recovery angles, DCRAs. We find that in control samples (treatment without crosslinker) the DCRAs are altered depending on the solvent. Using DMF, carbonyldiimidazole shows the best DCRA (160.1°, 15° higher than the non-treated fabrics). In ethyl acetate, triglycidyl isocyanurate shows the highest DCRA (22° higher than the control). The most promising crosslinkers are applied with selected catalysts known from literature. Here, trigycidyl isocyanurate in combination with the superbase P4-t-Bu gives the best DCRA (35° higher than the control). Using the vapor-chemical finishing, divinylsulfone as crosslinker increases the DCRA to 162.7° (18° higher than non-treated fabrics). Hence, cotton cellulose fabrics can be successfully finished in anhydrous conditions. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48371. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc.
  • Item
    Homoserine Lactone as a Structural Key Element for the Synthesis of Multifunctional Polymers
    (Basel : MDPI, 2017) Marquardt, Fabian; Mommer, Stefan; Lange, Justin; Jeschenko, Pascal M.; Keul, Helmut; Möller, Martin
    The use of bio-based building blocks for polymer synthesis represents a milestone on the way to “green” materials. In this work, two synthetic strategies for the preparation of multifunctional polymers are presented in which the key element is the functionality of homoserine lactone. First, the synthesis of a bis cyclic coupler based on a thiolactone and homoserine lactone is displayed. This coupler was evaluated regarding its regioselectivity upon reaction with amines and used in the preparation of multifunctional polymeric building blocks by reaction with diamines. Furthermore, a linear polyglycidol was functionalized with homoserine lactone. The resulting polyethers with lactone groups in the side chain were converted to cationic polymers by reaction with 3-(dimethylamino)-1-propylamine followed by quaternization with methyl iodide.