Search Results

Now showing 1 - 8 of 8
  • Item
    An epidemic CC1-MRSA-IV clone yields false-negative test results in molecular MRSA identification assays: a note of caution, Austria, Germany, Ireland, 2020
    (Stockholm : European Centre for Disease Prevention and Control, 2020) Monecke, Stefan; König, Elisabeth; Earls, Megan R.; Leitner, Eva; Müller, Elke; Wagner, Gabriel E.; Poitz, David M.; Jatzwauk, Lutz; Vremerǎ, Teodora; Dorneanu, Olivia S.; Simbeck, Alexandra; Ambrosch, Andreas; Zollner-Schwetz, Ines; Krause, Robert; Ruppitsch, Werner; Schneider-Brachert, Wulf; Coleman, David C.; Steinmetz, Ivo; Ehricht, Ralf
    We investigated why a clinical meticillin-resistant Staphylococcus aureus (MRSA) isolate yielded false-negative results with some commercial PCR tests for MRSA detection. We found that an epidemic European CC1-MRSA-IV clone generally exhibits this behaviour. The failure of the assays was attributable to a large insertion in the orfX/SCCmec integration site. To ensure the reliability of molecular MRSA tests, it is vital to monitor emergence of new SCCmec types and junction sites.
  • Item
    Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria
    (Basel : MDPI, 2020) Achek, Rachid; Hotzel, Helmut; Nabi, Ibrahim; Kechida, Souad; Mami, Djamila; Didouh, Nassima; Tomaso, Herbert; Neubauer, Heinrich; Ehricht, Ralf; Monecke, Stefan; El-Adawy, Hosny
    Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilmassociated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilmassociated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization of antibiotic and biocide resistance genes and virulence factors of staphylococcus species associated with bovine mastitis in Rwanda
    (Basel : MDPI AG, 2020) Antók, Fruzsina Irén; Mayrhofer, Rosa; Marbach, Helene; Masengesho, Jean Claude; Keinprecht, Helga; Nyirimbuga, Vedaste; Fischer, Otto; Lepuschitz, Sarah; Ruppitsch, Werner; Ehling-Schulz, Monika; Feßler, Andrea T.; Schwarz, Stefan; Monecke, Stefan; Ehricht, Ralf; Grunert, Tom; Spergser, Joachim; Loncaric, Igor
    The present study was conducted from July to August 2018 on milk samples taken at dairy farms in the Northern Province and Kigali District of Rwanda in order to identify Staphylococcus spp. associated with bovine intramammary infection. A total of 161 staphylococcal isolates originating from quarter milk samples of 112 crossbred dairy cattle were included in the study. Antimicrobial susceptibility testing was performed and isolates were examined for the presence of various resistance genes. Staphylococcus aureus isolates were also analyzed for the presence of virulence factors, genotyped by spa typing and further phenotypically subtyped for capsule expression using Fourier Transform Infrared (FTIR) spectroscopy. Selected S. aureus were characterized using DNA microarray technology, multi-locus sequence typing (MLST) and whole-genome sequencing. All mecA-positive staphylococci were further genotyped using dru typing. In total, 14 different staphylococcal species were detected, with S. aureus being most prevalent (26.7%), followed by S. xylosus (22.4%) and S. haemolyticus (14.9%). A high number of isolates was resistant to penicillin and tetracycline. Various antimicrobial and biocide resistance genes were detected. Among S. aureus, the Panton–Valentine leukocidin (PVL) genes, as well as bovine leukocidin (LukM/LukF-P83) genes, were detected in two and three isolates, respectively, of which two also carried the toxic shock syndrome toxin gene tsst-1 bovine variant. t1236 was the predominant spa type. FTIR-based capsule serotyping revealed a high prevalence of non-encapsulated S. aureus isolates (89.5%). The majority of the selected S. aureus isolates belonged to clonal complex (CC) 97 which was determined using DNA microarray based assignment. Three new MLST sequence types were detected. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Staphylococcus aureus and methicillin resistant S. Aureus in nepalese primates: Resistance to antimicrobials, virulence, and genetic lineages
    (Basel : MDPI AG, 2020) Roberts, Marilyn C.; Joshi, Prabhu Raj; Monecke, Stefan; Ehricht, Ralf; Müller, Elke; Gawlik, Darius; Diezel, Celia; Braun, Sascha D.; Paudel, Saroj; Acharya, Mahesh; Khanal, Laxman; Koju, Narayan P.; Chalise, Mukesh; Kyes, Randall C.
    Staphylococcus aureus is a ubiquitous pathogen and colonizer in humans and animals. There are few studies on the molecular epidemiology of S. aureus in wild monkeys and apes. S. aureus carriage in rhesus macaques (Macaca mulatta) and Assam macaques (Macaca assamensis) is a species that has not previously been sampled and lives in remote environments with limited human contact. Forty Staphylococcus aureus isolates including 33 methicillin-susceptible S. aureus (MSSA) and seven methicillin-resistant S. aureus (MRSA) were characterized. Thirty-four isolates were from rhesus macaques and six isolates (five MSSA, one MRSA) were from Assam macaques. Isolates were characterized using StaphyType DNA microarrays. Five of the MRSA including one from Assam macaque were CC22 MRSA-IV (PVL+/tst+), which is a strain previously identified in Nepalese rhesus. One MRSA each were CC6 MRSA-IV and CC772 MRSA-V (PVL+). One MSSA each belonged to CC15, CC96, and CC2990. Six MRSA isolates carried the blaZ, while ten known CC isolates (seven MRSA, three MSSA) carried a variety of genes including aacA-aphD, aphA3, erm(C), mph(C), dfrA, msrA, and/or sat genes. The other 30 MSSA isolates belonged to 17 novel clonal complexes, carried no antibiotic resistance genes, lacked Panton–Valentine Leukocidin (PVL), and most examined exotoxin genes. Four clonal complexes carried egc enterotoxin genes, and four harbored edinB, which is an exfoliative toxin homologue. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017
    (Stockholm : European Centre for Disease Prevention and Control, 2019) Desvars-Larrive, Amélie; Ruppitsch, Werner; Lepuschitz, Sarah; Szostak, Michael P.; Spergser, Joachim; Feßler, Andrea T.; Schwarz, Stefan; Monecke, Stefan; Ehricht, Ralf; Walzer, Chris; Loncaric, Igor
    Background: Brown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria. Aim: We intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum β-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS). Methods: We surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We character-ised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids. Results: Eight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-β-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the blaCTX-M gene and one carried a plasmid-encoded ampC gene (blaCMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleuret-tii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus. Conclusion: Our findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities. © 2019, European Centre for Disease Prevention and Control (ECDC). All rights reserved.
  • Item
    Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia
    (Oxford : Wiley-Blackwell, 2019) Rasmussen, Gunlög; Idosa, Berhane Asfaw; Bäckman, Anders; Monecke, Stefan; Strålin, Kristoffer; Särndahl, Eva; Söderquist, Bo
    The inflammasome is a multiprotein complex that mediates caspase-1 activation with subsequent maturation of the proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase-1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent-labeled inhibitor of caspase-1), while IL-1ß and IL-18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase-1), and IL1B (pro-IL-1ß) was analyzed by quantitative PCR. We found induced caspase-1 activity in innate immune cells with subsequent release of IL-18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase-1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. © 2019 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd
  • Item
    Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80
    (San Francisco, California, US : PLOS, 2020) Gawlik, Darius; Ruppelt-Lorz, Antje; Müller, Elke; Reißig, Annett; Hotzel, Helmut; Braun, Sascha D.; Söderquist, Bo; Ziegler-Cordts, Albrecht; Stein, Claudia; Pletz, Mathias W.; Ehricht, Ralf; Monecke, Stefan
    A PVL-positive, methicillin-susceptible Staphylococcus aureus was cultured from pus from cervical lymphadenitis of a patient of East-African origin. Microarray hybridisation assigned the isolate to clonal complex (CC) 80 but revealed unusual features, including the presence of the ORF-CM14 enterotoxin homologue and of an ACME-III element as well as the absence of etD and edinB. The isolate was subjected to both, Illumina and Nanopore sequencing allowing characterisation of deviating regions within the strain´s genome. Atypical features of this strain were attributable to the presence of two genomic regions that originated from other S. aureus lineages and that comprised, respectively, 3% and 1.4% of the genome. One deviating region extended from walJ to sirB. It comprised ORF-CM14 and the ACME-III element. A homologous but larger fragment was also found in an atypical S. aureus CC1/ST567 strain whose lineage might have served as donor of this genomic region. This region itself is a chimera comprising fragments from CC1 as well as fragments of unknown origin. The other deviating region comprised the region from htsB to ecfA2, i.e., another 3% of the genome. It was very similar to CC1 sequences. Either this suggests an incorporation of CC1 DNA into the study strain, or alternatively a recombination event affecting “canonical” CC80. Thus, the study strain bears witness of several recombination events affecting supposedly core genomic genes. Although the exact mechanism is not yet clear, such chimerism seems to be an additional pathway in the evolution of S. aureus. This could facilitate also a transmission of virulence and resistance factors and therefore offer an additional evolutionary advantage.
  • Item
    Molecular epidemiology of methicillin-susceptible and methicillin-resistant staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the Nasal S. aureus Population
    (Basel : MDPI, 2020) Raafat, Dina; Mrochen, Daniel M.; Al’Sholui, Fawaz; Heuser, Elisa; Ryll, René; Pritchett-Corning, Kathleen R.; Jacob, Jens; Walther, Bernd; Matuschka, Franz-Rainer; Richter, Dania; Westerhüs, Uta; Pikula, Jiri; van den Brandt, Jens; Nicklas, Werner; Monecke, Stefan; Strommenger, Birgit; van Alen, Sarah; Becker, Karsten; Ulrich, Rainer G.; Holtfreter, Silva
    Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Freeliving wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. © 2020 by the authors.