Search Results

Now showing 1 - 7 of 7
  • Item
    Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host
    (Basel : MDPI, 2019) Tuchscherr, Lorena; Pöllath, Christine; Siegmund, Anke; Deinhardt-Emmer, Stefanie; Hoerr, Verena; Svensson, Carl-Magnus; Figge, Marc Thilo; Monecke, Stefan; Löffler, Bettina
    Staphylococcus aureus colonizes epithelial surfaces, but it can also cause severe infections. The aim of this work was to investigate whether bacterial virulence correlates with defined types of tissue infections. For this, we collected 10–12 clinical S. aureus strains each from nasal colonization, and from patients with endoprosthesis infection, hematogenous osteomyelitis, and sepsis. All strains were characterized by genotypic analysis, and by the expression of virulence factors. The host–pathogen interaction was studied through several functional assays in osteoblast cultures. Additionally, selected strains were tested in a murine sepsis/osteomyelitis model. We did not find characteristic bacterial features for the defined infection types; rather, a wide range in all strain collections regarding cytotoxicity and invasiveness was observed. Interestingly, all strains were able to persist and to form small colony variants (SCVs). However, the low-cytotoxicity strains survived in higher numbers, and were less efficiently cleared by the host than the highly cytotoxic strains. In summary, our results indicate that not only destructive, but also low-cytotoxicity strains are able to induce infections. The low-cytotoxicity strains can successfully survive, and are less efficiently cleared from the host than the highly cytotoxic strains, which represent a source for chronic infections. The understanding of this interplay/evolution between the host and the pathogen during infection, with specific attention towards low-cytotoxicity isolates, will help to optimize treatment strategies for invasive and therapy-refractory infection courses.
  • Item
    Characterisation of a novel composite SCCmec-SCCfus element in an emerging Staphylococcus aureus strain from the Arabian Gulf region
    (San Francisco : Public Library of Science, 2019) Senok, Abiola; Slickers, Peter; Hotzel, Helmut; Boswihi, Samar; Braun, Sascha D.; Gawlik, Darius; Müller, Elke; Nabi, Anju; Nassar, Rania; Nitschke, Hedda; Reißig, Annett; Ruppelt-Lorz, Antje; Mafofo, Joseph; Somili, Ali M.; Udo, Edet; Ehricht, Ralf; Monecke, Stefan
    Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.
  • Item
    Fast, economic and simultaneous identification of clinically relevant Gram-negative species with multiplex real-time PCR
    (London : Future Medicine Ltd, 2019) Weiss, Daniel; Gawlik, Darius; Hotzel, Helmut; Engelmann, Ines; Mueller, Elke; Slickers, Peter; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf
    Aim: A newly designed multiplex real-time PCR (rt-PCR) was validated to detect four clinically relevant Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa). Materials & methods: Serial dilutions of genomic DNA were used to determine the limit of detection. Colony PCR was performed with isolates of the four selected species and other species as negative controls. Isolates were characterized genotypically and phenotypically to evaluate the assay. Results: Specific signals of all target genes were detected with diluted templates comprising ten genomic equivalents. Using colony rt-PCR, all isolates of the target species were identified correctly. All negative control isolates were negative. Conclusion: The genes gad, basC, khe and ecfX can reliably identify these four species via multiplex colony rt-PCR. © 2018 Daniel Weiss.
  • Item
    Emergence of novel methicillin resistant Staphylococcus aureus strains in a tertiary care facility in Tiyadh, Saudi Arabia
    (Macclesfield, UK : Dove Medical Press, 2019) Senok, Abiola; Somili, Ali M.; Nassar, Rania; Garaween, Ghada; Kim Sing, Garwin; Müller, Elke; Reißig, Annett; Gawlik, Darius; Ehricht, Ralf; Monecke, Stefan
    Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.
  • Item
    Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017
    (Stockholm : European Centre for Disease Prevention and Control, 2019) Desvars-Larrive, Amélie; Ruppitsch, Werner; Lepuschitz, Sarah; Szostak, Michael P.; Spergser, Joachim; Feßler, Andrea T.; Schwarz, Stefan; Monecke, Stefan; Ehricht, Ralf; Walzer, Chris; Loncaric, Igor
    Background: Brown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria. Aim: We intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum β-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS). Methods: We surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We character-ised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids. Results: Eight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-β-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the blaCTX-M gene and one carried a plasmid-encoded ampC gene (blaCMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleuret-tii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus. Conclusion: Our findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities. © 2019, European Centre for Disease Prevention and Control (ECDC). All rights reserved.
  • Item
    Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia
    (Oxford : Wiley-Blackwell, 2019) Rasmussen, Gunlög; Idosa, Berhane Asfaw; Bäckman, Anders; Monecke, Stefan; Strålin, Kristoffer; Särndahl, Eva; Söderquist, Bo
    The inflammasome is a multiprotein complex that mediates caspase-1 activation with subsequent maturation of the proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase-1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent-labeled inhibitor of caspase-1), while IL-1ß and IL-18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase-1), and IL1B (pro-IL-1ß) was analyzed by quantitative PCR. We found induced caspase-1 activity in innate immune cells with subsequent release of IL-18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase-1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. © 2019 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd
  • Item
    Anti-Staphylococcal Humoral Immune Response in patients with chronic rhinosinusitis
    (Amsterdam : European Rhinologic Society, 2019) Thunberg, Ulrica; Hugosson, Svante; Fredlund, Hans; Cao, Yang; Ehricht, Ralf; Monecke, Stefan; Mueller, Elke; Engelmann, Susanne; Söderquist, Bo
    Background: Staphylococcus aureus (S. aureus) can behave both as a harmless commensal and as a pathogen. Its significance in the pathogenesis of chronic rhinosinusitis (CRS) is not yet fully understood. This study aimed to determine serum antibody responses to specific staphylococcal antigens in patients with CRS and healthy controls, and to investigate the correlation between specific antibody response and severity of symptoms. Methodology: Serum samples from 39 patients with CRS and 56 healthy controls were analysed using a protein microarray to investigate the antibody response to S. aureus specific antigens, with a focus on immunoglobulin G (IgG) directed toward staphylococcal components accessible to the immune system. Holm-Bonferroni corrections were applied in all analyses. Information about growth of S. aureus in nares and maxillary sinus was taken from a previous study based on the same individuals. Clinical symptoms were assessed using a scoring system. Results: IgG antibody levels toward staphylococcal TSST-1 and LukF-PV were significantly higher in the CRS patient group compared to healthy controls, and levels of anti-TSST-1 antibodies were significantly higher in the CRS patient group with S. aureus in maxillary sinus than in controls. There were no correlations between the severity of symptoms and levels of serum anti-staphylococcal IgG antibody levels for LukF-PV and TSST-1. Conclusions: TSST-1 and LukF-PV could be interesting markers for future studies of the pathogenesis of CRS.