Search Results

Now showing 1 - 2 of 2
  • Item
    TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Moors, Marco; An, Yun; Kuc, Agnieszka; Monakhov, Kirill Yu
    Highly ordered titanium oxide films grown on a Pt3Ti(111) alloy surface were utilized for the controlled immobilization and tip-induced electric field-triggered electronic manipulation of nanoscopic W3O9 clusters. Depending on the operating conditions, two different stable oxide phases, z'-TiO x and w'-TiO x , were produced. These phases show a strong effect on the adsorption characteristics and reactivity of W3O9 clusters, which are formed as a result of thermal evaporation of WO3 powder on the complex TiO x /Pt3Ti(111) surfaces under ultra-high vacuum conditions. The physisorbed tritungsten nano-oxides were found as isolated single units located on the metallic attraction points or as supramolecular self-assemblies with a W3O9-capped hexagonal scaffold of W3O9 units. By applying scanning tunneling microscopy to the W3O9-(W3O9)6 structures, individual units underwent a tip-induced reduction to W3O8. At elevated temperatures, agglomeration and growth of large WO3 islands, which thickness is strongly limited to a maximum of two unit cells, were observed. The findings boost progress toward template-directed nucleation, growth, networking, and charge state manipulation of functional molecular nanostructures on surfaces using operando techniques.
  • Item
    Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices
    (Weinheim : Wiley-VCH, 2020) Heisig, Thomas; Kler, Joe; Du, Hongchu; Baeumer, Christoph; Hensling, Felix; Glöß, Maria; Moors, Marco; Locatelli, Andrea; Menteş, Tevfik Onur; Genuzio, Francesca; Mayer, Joachim; De Souza, Roger A.; Dittmann, Regina
    Resistive switching in transition metal oxide-based metal-insulator-metal structures relies on the reversible drift of ions under an applied electric field on the nanoscale. In such structures, the formation of conductive filaments is believed to be induced by the electric-field driven migration of oxygen anions, while the cation sublattice is often considered to be inactive. This simple mechanistic picture of the switching process is incomplete as both oxygen anions and metal cations have been previously identified as mobile species under device operation. Here, spectromicroscopic techniques combined with atomistic simulations to elucidate the diffusion and drift processes that take place in the resistive switching model material SrTiO3 are used. It is demonstrated that the conductive filament in epitaxial SrTiO3 devices is not homogenous but exhibits a complex microstructure. Specifically, the filament consists of a conductive Ti3+-rich region and insulating Sr-rich islands. Transmission electron microscopy shows that the Sr-rich islands emerge above Ruddlesden–Popper type antiphase boundaries. The role of these extended defects is clarified by molecular static and molecular dynamic simulations, which reveal that the Ruddlesden–Popper antiphase boundaries constitute diffusion fast-paths for Sr cations in the perovskites structure. © 2020 The Authors. Published by Wiley-VCH GmbH