Search Results

Now showing 1 - 2 of 2
  • Item
    The role of the Kramers-Henneberger atom in the higher-order Kerr effect
    (Bristol : IOP, 2013) Richter, M.; Patchkovskii, S.; Morales, F.; Smirnova, O.; Ivanov, M.
    We discuss the connection between strong-field ionization, saturation of the Kerr response and the formation of the Kramers-Henneberger (KH) atom and long-living excitations in intense infrared (IR) external fields. We present a generalized model for the intensity-dependent response of atoms in strong IR laser fields, describing deviations in the nonlinear response at the frequency of the driving field from the standard model. We show that shaping the driving laser pulse allows one to reveal signatures of the excited KH states in the Kerr response of an individual atom.
  • Item
    Even harmonic generation in isotropic media of dissociating homonuclear molecules
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Silva, R.E.F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.
    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process.