Search Results

Now showing 1 - 2 of 2
  • Item
    Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
    (Basel : MDPI, 2022) Ursaki, Veaceslav V.; Lehmann, Sebastian; Zalamai, Victor V.; Morari, Vadim; Nielsch, Kornelius; Tiginyanu, Ion M.; Monaico, Eduard V.
    GaAs nanowire arrays have been prepared by anodization of GaAs substrates. The nanowires produced on (111)B GaAs substrates were found to be oriented predominantly perpendicular to the substrate surface. The prepared nanowire arrays have been coated with thin ZnO or TiO2 layers by means of thermal atomic layer deposition (ALD), thus coaxial core–shell hybrid structures are being fabricated. The hybrid structures have been characterized by scanning electron microscopy (SEM) for the morphology investigations, by Energy Dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis for the composition and crystal structure assessment, and by photoluminescence (PL) spectroscopy for obtaining an insight on emission polarization related to different recombination channels in the prepared core–shell structures.
  • Item
    Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties
    (Basel : MDPI, 2022) Monaico, Eduard V.; Morari, Vadim; Ursaki, Veaceslav V.; Nielsch, Kornelius; Tiginyanu, Ion M.
    The preparation of GaAs nanowire templates with the cost-effective electrochemical etching of (001) and (111)B GaAs substrates in a 1 M HNO3 electrolyte is reported. The electrochemical etching resulted in the obtaining of GaAs nanowires with both perpendicular and parallel orientations with respect to the wafer surface. Core–shell GaAs-Fe nanowire arrays have been prepared by galvanostatic Fe deposition into these templates. The fabricated arrays have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The magnetic properties of the polycrystalline Fe nanotubes constituting the shells of the cylindrical structures, such as the saturation and remanence moment, squareness ratio, and coercivity, were analyzed in relation to previously reported data on ferromagnetic nanowires and nanotubes.