Search Results

Now showing 1 - 3 of 3
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Microgel that swims to the beat of light
    (Berlin ; Heidelberg : Springer, 2021) Mourran, Ahmed; Jung, Oliver; Vinokur, Rostislav; Möller, Martin
    Complementary to the quickly advancing understanding of the swimming of microorganisms, we demonstrate rather simple design principles for systems that can mimic swimming by body shape deformation. For this purpose, we developed a microswimmer that could be actuated and controlled by fast temperature changes through pulsed infrared light irradiation. The construction of the microswimmer has the following features: (i) it is a bilayer ribbon with a length of 80 or 120 μm, consisting of a thermo-responsive hydrogel of poly-N-isopropylamide coated with a 2-nm layer of gold and equipped with homogeneously dispersed gold nanorods; (ii) the width of the ribbon is linearly tapered with a wider end of 5 μm and a tip of 0.5 μm; (iii) a thickness of only 1 and 2 μm that ensures a maximum variation of the cross section of the ribbon along its length from square to rectangular. These wedge-shaped ribbons form conical helices when the hydrogel is swollen in cold water and extend to a filament-like object when the temperature is raised above the volume phase transition of the hydrogel at 32∘C. The two ends of these ribbons undergo different but coupled modes of motion upon fast temperature cycling through plasmonic heating of the gel-objects from inside. Proper choice of the IR-light pulse sequence caused the ribbons to move at a rate of 6 body length/s (500 μm/s) with the wider end ahead. Within the confinement of rectangular container of 30 μm height and 300 μm width, the different modes can be actuated in a way that the movement is directed by the energy input between spinning on the spot and fast forward locomotion.
  • Item
    The swimming of a deforming helix
    (Berlin ; Heidelberg : Springer, 2018) Koens, Lyndon; Zhang, Hang; Moeller, Martin; Mourran, Ahmed; Lauga, Eric
    Many microorganisms and artificial microswimmers use helical appendages in order to generate locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma, Rhodobacter sphaeroides and Spirochetes induce movement by deforming a helical-shaped body. Recently, artificial devices have been created which also generate motion by deforming their helical body in a non-reciprocal way (A. Mourran et al. Adv. Mater. 29, 1604825, 2017). Inspired by these systems, we investigate the transport of a deforming helix within a viscous fluid. Specifically, we consider a swimmer that maintains a helical centreline and a single handedness while changing its helix radius, pitch and wavelength uniformly across the body. We first discuss how a deforming helix can create a non-reciprocal translational and rotational swimming stroke and identify its principle direction of motion. We then determine the leading-order physics for helices with small helix radius before considering the general behaviour for different configuration parameters and how these swimmers can be optimised. Finally, we explore how the presence of walls, gravity, and defects in the centreline allow the helical device to break symmetries, increase its speed, and generate transport in directions not available to helices in bulk fluids.