Search Results

Now showing 1 - 3 of 3
  • Item
    All-sky interferometric meteor radar meteoroid speed estimation using the Fresnel transform
    (München : European Geopyhsical Union, 2007) Holdsworth, D.A.; Elford, W.G.; Vincent, R.A.; Reid, I.M.; Murphy, D.J.; Singer, W.
    Fresnel transform meteor speed estimation is investigated. A spectral based technique is developed allowing the transform to be applied at low temporal sampling rates. Simulations are used to compare meteoroid speeds determined using the Fresnel transform and alternative techniques, confirming that the Fresnel transform produces the most accurate meteoroid speed estimates for high effective pulse repetition frequencies (PRFs). The Fresnel transform is applied to high effective PRF data collected during Leonid meteor showers, producing speed estimates in good agreement with the theoretical pre-atmospheric speed of the 71 kms−1. Further simulations for the standard low effective PRF sampling parameters used for Buckland Park meteor radar (BPMR) observations suggests that the Fresnel transform can successfully estimate meteor speeds up to 80 kms−1. Fresnel transform speed estimation is applied using the BPMR, producing speed distributions similar to those obtained in previous studies. The technique is also applied to data collected using the BPMR sampling parameters during Southern delta-Aquarid and Geminid meteor showers, producing speeds in very good agreement with the theoretical pre-atmospheric speeds of these showers (41 kms−1 and 35 kms−1, respectively). However, application of the Fresnel transform to high speed showers suggests that the practical upper limit for accurate speed estimation using the BPMR sampling parameters is around 50 kms−1. This limit allows speed accurate estimates to be made for about 70% of known meteor showers, and around 70% of sporadic echoes.
  • Item
    Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica
    (München : European Geopyhsical Union, 2008) Latteck, R.; Singer, W.; Morris, R.J.; Hocking, W.K.; Murphy, D.J.; Holdsworth, D.A.; Swarnalingam, N.
    Polar Mesosphere Summer Echoes (PMSE) have been observed in the high latitudes of the Northern and Southern Hemisphere for several years using VHF radars located at Andenes/Norway (69° N, 16° E), Resolute Bay/Canada (75° N, 95° W), and Davis/Antarctica (69° S, 78° E). The VHF radars at the three sites were calibrated using the same methods (noise source and delayed transmitting signal) and identical equipment. Volume reflectivity was derived from the calibrated echo power and the characteristics of the seasonal variation of PMSE were estimated at the sites for the years 2004 to 2007. The largest peak volume reflectivity of about 2×10−9 m−1 was observed at Andenes compared with their counterparts at Davis (~4×10−11 m−1) and Resolute Bay (~6×10−12 m−1). The peak of the PMSE height distribution is 85.6 km at Davis which is about 1 km higher than at Andenes. At Resolute Bay the height distribution peaks at about 85 km but only a few layers were found below 84 km. The mean PMSE occurrence rate is 83% at Andenes, 38% at Davis with larger variability and only 18% at Resolute Bay (in late summer). The duration of the PMSE season varies at Andenes from 104 to 113 days and at Davis from 88 to 93 days. In general the PMSE seasons starts about 5 days later at Davis and ends about 10 days earlier compared to Andenes. In all three seasons the PMSE occurrence suddenly drops to a much lower level at Davis about 32 days after solstice whereas the PMSE season decays smoothly at Andenes. The duration of the PMSE season at Andenes and Davis is highly correlated with the presence of equatorward directed winds, the observed differences in PMSE occurrence are related to the mesospheric temperatures at both sites.
  • Item
    Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica
    (München : European Geopyhsical Union, 2008) Nilsson, H.; Kirkwood, S.; Morris, R.J.; Latteck, R.; Klekociuk, A.R.; Murphy, D.J.; Zecha, M.; Belova, E.
    Simultaneous observations of Polar Mesosphere Summer Echoes (PMSE) at Wasa and Davis in Antarctica have been compared. Data with simultaneous observations were obtained for 16 days between 18 January and 5 February 2007. Wasa is at a higher geographic latitude than Davis, but at lower geomagnetic latitude. PMSE strength and occurrence frequency were significantly higher at Wasa. The variation of daily PMSE occurrence over the measurement period was in agreement with temperature and frost-point estimates from the Microwave Limb Sounder on the Aura spacecraft for both Wasa and Davis. The diurnal variation of PMSE strength and occurrence frequency as well as the shape of the altitude profiles of average PMSE strength and occurrence frequency were similar for the two sites. The deepest part of the evening minimum in PMSE occurrence frequency occurred for the same magnetic local time at the two sites rather than for the same local solar time. The study indicates that PMSE strength and occurrence increase between 68.6° and 73° geographic latitude, consistent with observed differences in mesospheric temperatures and water vapor content. The average altitude distribution of PMSE varies relatively little with latitude in the same hemisphere.