Search Results

Now showing 1 - 3 of 3
  • Item
    The eROSITA X-ray telescope on SRG
    (Les Ulis : EDP Sciences, 2021) Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; Bornemann, W.; Bräuninger, H.; Brüggen, M.; Brunner, H.; Brusa, M.; Bulbul, E.; Buntov, M.; Burwitz, V.; Burkert, W.; Clerc, N.; Churazov, E.; Coutinho, D.; Dauser, T.; Dennerl, K.; Doroshenko, V.; Eder, J.; Emberger, V.; Eraerds, T.; Finoguenov, A.; Freyberg, M.; Friedrich, P.; Friedrich, S.; Fürmetz, M.; Georgakakis, A.; Gilfanov, M.; Granato, S.; Grossberger, C.; Gueguen, A.; Gureev, P.; Haberl, F.; Hälker, O.; Hartner, G.; Hasinger, G.; Huber, H.; Ji, L.; Kienlin, A. v.; Kink, W.; Korotkov, F.; Kreykenbohm, I.; Lamer, G.; Lomakin, I.; Lapshov, I.; Liu, T.; Maitra, C.; Meidinger, N.; Menz, B.; Merloni, A.; Mernik, T.; Mican, B.; Mohr, J.; Müller, S.; Nandra, K.; Nazarov, V.; Pacaud, F.; Pavlinsky, M.; Perinati, E.; Pfeffermann, E.; Pietschner, D.; Ramos-Ceja, M. E.; Rau, A.; Reiffers, J.; Reiprich, T. H.; Robrade, J.; Salvato, M.; Sanders, J.; Santangelo, A.; Sasaki, M.; Scheuerle, H.; Schmid, C.; Schmitt, J.; Schwope, A.; Shirshakov, A.; Steinmetz, M.; Stewart, I.; Strüder, L.; Sunyaev, R.; Tenzer, C.; Tiedemann, L.; Trümper, J.; Voron, V.; Weber, P.; Wilms, J.; Yaroshenko, V.
    eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
  • Item
    The final SDSS-IV/SPIDERS X-ray point source spectroscopic catalogue
    (Les Ulis : EDP Sciences, 2020) Comparat, J.; Merloni, A.; Dwelly, T.; Salvato, M.; Schwope, A.; Coffey, D.; Wolf, J.; Arcodia, R.; Liu, T.; Buchner, J.; Nandra, K.; Georgakakis, A.; Clerc, N.; Brusa, M.; Brownstein, J.R.; Schneider, D.P.; Pan, K.; Bizyaev, D.
    Aims. We look to provide a detailed description of the SPectroscopic IDentification of ERosita Sources (SPIDERS) survey, an SDSS-IV programme aimed at obtaining spectroscopic classification and redshift measurements for complete samples of sufficiently bright X-ray sources. Methods. We describe the SPIDERS X-ray Point Source Spectroscopic Catalogue, considering its store of 11 092 observed spectra drawn from a parent sample of 14 759 ROSAT and XMM sources over an area of 5129 deg2 covered in SDSS-IV by the eBOSS survey. Results. This programme represents the largest systematic spectroscopic observation of an X-ray selected sample. A total of 10 970 (98.9%) of the observed objects are classified and 10 849 (97.8%) have secure redshifts. The majority of the spectra (10 070 objects) are active galactic nuclei (AGN), 522 are cluster galaxies, and 294 are stars. Conclusions. The observed AGN redshift distribution is in good agreement with simulations based on empirical models for AGN activation and duty cycle. Forming composite spectra of type 1 AGN as a function of the mass and accretion rate of their black holes reveals systematic differences in the H-beta emission line profiles. This study paves the way for systematic spectroscopic observations of sources that are potentially to be discovered in the upcoming eROSITA survey over a large section of the sky.
  • Item
    Extreme ultra-soft X-ray variability in an eROSITA observation of the narrow-line Seyfert 1 galaxy 1H 0707-495
    (Les Ulis : EDP Sciences, 2021) Boller, Th.; Liu, T.; Weber, P.; Arcodia, R.; Dauser, T.; Wilms, J.; Nandra, K.; Buchner, J.; Merloni, A.; Freyberg, M. J.; Krumpe, M.; Waddell, S. G. H.
    The ultra-soft narrow-line Seyfert 1 galaxy 1H 0707-495 is a well-known and highly variable active galactic nucleus (AGN), with a complex, steep X-ray spectrum, and has been studied extensively with XMM-Newton. 1H 0707-495 was observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) aboard the Spectrum-Roentgen-Gamma (SRG) mission on October 11, 2019, for about 60 000 s as one of the first calibration and pointed verification phase (CalPV) observations. The eROSITA light curves show significant variability in the form of a flux decrease by a factor of 58 with a 1 σ error confidence interval between 31 and 235. This variability is primarily in the soft band, and is much less extreme in the hard band. No strong ultraviolet variability has been detected in simultaneous XMM-Newton Optical Monitor observations. The UV emission is LUV ≈ 1044 erg s-1, close to the Eddington limit. 1H 0707-495 entered the lowest hard flux state seen in 20 yr of XMM-Newton observations. In the eROSITA All-Sky Survey (eRASS) observations taken in April 2020, the X-ray light curve is still more variable in the ultra-soft band, but with increased soft and hard band count rates more similar to previously observed flux states. A model including relativistic reflection and a variable partial covering absorber is able to fit the spectra and provides a possible explanation for the extreme light-curve behaviour. The absorber is probably ionised and therefore more transparent to soft X-rays. This leaks soft X-rays in varying amounts, leading to large-Amplitude soft-X-ray variability.