Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of methyl terminal and carbon bridging groups ratio on critical properties of porous organosilicate-glass films
    (Basel : MDPI, 2020) Vishnevskiy, Alexey S.; Naumov, Sergej; Seregin, Dmitry S.; Wu, Yu-Hsuan; Chuang, Wei-Tsung; Rasadujjaman, Md.; Zhang, Jing; Leu, Jihperng; Vorotilov, Konstantin A.; Baklanov, Mikhail R.
    Organosilicate glass-based porous low dielectic constant films with different ratios of terminal methyl to bridging organic (methylene, ethylene and 1,4-phenylene) groups are spin-on deposited by using a mixture of alkylenesiloxane with organic bridges and methyltrimethoxysilane, followed by soft baking at 120–200◦ C and curing at 430◦ C. The films’ porosity was controlled by using sacrificial template Brij® L4. Changes of the films’ refractive indices, mechanical properties, k-values, porosity and pore structure versus chemical composition of the film’s matrix are evaluated and compared with methyl-terminated low-k materials. The chemical resistance of the films to annealing in oxygen-containing atmosphere is evaluated by using density functional theory (DFT). It is found that the introduction of bridging groups changes their porosity and pore structure, increases Young’s modulus, but the improvement of mechanical properties happens simultaneously with the increase in the refractive index and k-value. The 1,4-phenylene bridging groups have the strongest impact on the films’ properties. Mechanisms of oxidative degradation of carbon bridges are studied and it is shown that 1,4-phenylene-bridged films have the highest stability. Methylene-and ethylene-bridged films are less stable but methylene-bridged films show slightly higher stability than ethylene-bridged films. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Enhanced removal and toxicity decline of diclofenac by combining UVA treatment and adsorption of photoproducts to polyvinylidene difluoride
    (Basel : MDPI, 2020) Fischer, Kristina; Sydow, Stephan; Griebel, Jan; Naumov, Sergej; Elsner, Christian; Thomas, Isabell; Latif, Amira Abdul; Schulze, Agnes
    The occurrence of micropollutants in the environment is an emerging issue. Diclofenac, a non-steroidal anti-inflammatory drug, is one of the most frequently detected pharmaceuticals in the environment worldwide. Diclofenac is transformed by UVA light into different products with higher toxicity. The absorbance of the transformation products overlaps with the absorbance of diclofenac itself and inhibits the ongoing photoreaction. By adding polyvinylidene difluoride (PVDF), the products adsorb to the surface of PVDF. Therefore, phototransformation of diclofenac and total organic carbon (TOC) removal is enhanced and the toxicity decreased. At 15 min and 18 h of UVA treatment, removal of diclofenac and TOC increases from 56% to 65% and 18% to 54%, respectively, when PVDF is present. The toxicity of a UVA treated (18 h) diclofenac solution doubles (from 5 to 10, expressed in toxicity units, TU), while no toxicity was detectable when PVDF is present during UVA treatment (TU = 0). PVDF does not need to be irradiated itself but must be present during photoreaction. The adsorbent can be reused by washing with water or ethanol. Diclofenac (25 mg L−1) UVA light irradiation was monitored with high performance liquid chromatography (HPLC), UV-Vis spectroscopy and by analysing the decrease of TOC. The toxicity towards Vibrio fischeri was examined according to DIN EN ISO 11348-1: 2009-05. Density functional theory (DFT) was used to simulate the phototransformation products known in literature as well as further products identified via gas chromatography–mass spectrometry (GC-MS). The absorption spectra, reaction enthalpies (ΔH) and Gibbs free energy of reactions (ΔG) were calculated. The combination of UVA irradiation of diclofenac with adsorption of photoproducts to PVDF is unique and opens up new possibilities to enhance removal of pollutants from water.