Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin

2020, Ismail, Muhammad Fraz, Naz, Bibi S., Wortmann, Michel, Disse, Markus, Bowling, Laura C., Bogacki, Wolfgang

This study performs a comparison of two model calibration/validation approaches and their influence on future hydrological projections under climate change by employing two climate scenarios (RCP2.6 and 8.5) projected by four global climate models. Two hydrological models (HMs), snowmelt runoff model + glaciers and variable infiltration capacity model coupled with a glacier model, were used to simulate streamflow in the highly snow and glacier melt–driven Upper Indus Basin. In the first (conventional) calibration approach, the models were calibrated only at the basin outlet, while in the second (enhanced) approach intermediate gauges, different climate conditions and glacier mass balance were considered. Using the conventional and enhanced calibration approaches, the monthly Nash-Sutcliffe Efficiency (NSE) for both HMs ranged from 0.71 to 0.93 and 0.79 to 0.90 in the calibration, while 0.57–0.92 and 0.54–0.83 in the validation periods, respectively. For the future impact assessment, comparison of differences based on the two calibration/validation methods at the annual scale (i.e. 2011–2099) shows small to moderate differences of up to 10%, whereas differences at the monthly scale reached up to 19% in the cold months (i.e. October–March) for the far future period. Comparison of sources of uncertainty using analysis of variance showed that the contribution of HM parameter uncertainty to the overall uncertainty is becoming very small by the end of the century using the enhanced approach. This indicates that enhanced approach could potentially help to reduce uncertainties in the hydrological projections when compared to the conventional calibration approach. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins

2020, Huang, Shaochun, Shah, Harsh, Naz, Bibi S., Shrestha, Narayan, Mishra, Vimal, Daggupati, Prasad, Ghimire, Uttam, Vetter, Tobias

This study aimed to investigate the influence of hydrological model calibration/validation on discharge projections for three large river basins (the Rhine, Upper Mississippi and Upper Yellow). Three hydrological models (HMs), which have been firstly calibrated against the monthly discharge at the outlet of each basin (simple calibration), were re-calibrated against the daily discharge at the outlet and intermediate gauges under contrast climate conditions simultaneously (enhanced calibration). In addition, the models were validated in terms of hydrological indicators of interest (median, low and high flows) as well as actual evapotranspiration in the historical period. The models calibrated using both calibration methods were then driven by the same bias corrected climate projections from five global circulation models (GCMs) under four Representative Concentration Pathway scenarios (RCPs). The hydrological changes of the indicators were represented by the ensemble median, ensemble mean and ensemble weighted means of all combinations of HMs and GCMs under each RCP. The results showed moderate (5–10%) to strong influence (> 10%) of the calibration methods on the ensemble medians/means for the Mississippi, minor to moderate (up to 10%) influence for the Yellow and minor (< 5%) influence for the Rhine. In addition, the enhanced calibration/validation method reduced the shares of uncertainty related to HMs for three indicators in all basins when the strict weighting method was used. It also showed that the successful enhanced calibration had the potential to reduce the uncertainty of hydrological projections, especially when the HM uncertainty was significant after the simple calibration. © 2020, The Author(s).