Search Results

Now showing 1 - 3 of 3
  • Item
    A Kohn-Sham system at zero temperature
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Cornean, Horia; Hoke, Kurt; Neidhardt, Hagen; Racec, Paul Nicolae; Rehberg, Joachim
    An one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schrödinger operator with effective Kohn-Sham potential and obtain $W^1,2$-bounds of the associated particle density operator. Afterwards, compactness and continuity results allow to apply Schauder's fixed point theorem. In case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero.
  • Item
    Monotonicity properties of the quantum mechanical particle density
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Kaiser, Hans-Christoph; Neidhardt, Hagen; Rehberg, Joachim
    An elementary proof of the anti-monotonicity of the quantum mechanical particle density with respect to the potential in the Hamiltonian is given for a large class of admissible thermodynamic equilibrium distribution functions. In particular the zero temperature case is included.
  • Item
    Classical solutions of drift-diffusion equations for semiconductor devices: the 2D case
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Kaiser, Hans-Christian; Neidhardt, Hagen; Rehberg, Joachim; Gajewski, Herbert; Gröger, Konrad; Zacharias, Klaus
    We regard drift-diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue spaces. In particular, it turns out that the divergence of the electron and hole current is an integrable function. Hence, Gauss' theorem applies, and gives the foundation for space discretization of the equations by means of finite volume schemes. Moreover, the strong differentiability of the electron and hole density in time is constitutive for the implicit time discretization scheme. Finite volume discretization of space, and implicit time discretization are accepted custom in engineering and scientific computing. ---This investigation puts special emphasis on non-smooth spatial domains, mixed boundary conditions, and heterogeneous material compositions, as required in electronic device simulation.