Search Results

Now showing 1 - 2 of 2
  • Item
    Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges
    (Lausanne : Frontiers Media, 2020) Gruening, Martina; Neuber, Sven; Nestler, Peter; Lehnfeld, Jutta; Dubs, Manuela; Fricke, Katja; Schnabelrauch, Matthias; Helm, Christiane A.; Müller, Rainer; Staehlke, Susanne; Nebe, J. Barbara
    Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery. © Copyright © 2020 Gruening, Neuber, Nestler, Lehnfeld, Dubs, Fricke, Schnabelrauch, Helm, Müller, Staehlke and Nebe.
  • Item
    Influence of molecular weight of polycation polydimethyldiallylammonium and carbon nanotube content on electric conductivity of layer-by-layer films
    (Amsterdam [u.a.] : Elsevier, 2022) Neuber, Sven; Sill, Annekatrin; Efthimiopoulos, Ilias; Nestler, Peter; Fricke, Katja; Helm, Christiane A.
    For biological and engineering applications, nm-thin films with high electrical conductivity and tunable sheet resistance are desirable. Multilayers of polydimethyldiallylammonium chloride (PDADMA) with two different molecular weights (322 and 44.3 kDa) and oxidized carbon nanotubes (CNTs) were constructed using the layer-by-layer technique. The surface coverage of the CNTs was monitored with a selected visible near infrared absorption peak. Both the film thickness and the surface coverage of the CNTs increased linearly with the number of CNT/PDADMA bilayers deposited (film thickness up to 80 nm). Atomic force microscopy images showed a predominantly surface-parallel orientation of CNTs. Ohmic behavior with constant electrical conductivity of each CNT/PDADMA film and conductivity up to 4 · 103 S/m was found. A change in PDADMA molecular weight by almost a factor of ten has no effect on the film thickness and electrical conductivity, only the film/air roughness is reduced. However, increasing CNT concentration in the deposition dispersion from 0.15 up to 0.25 mg/ml results in an increased thickness of a CNT/PDADMA bilayer (by a factor of three). The increased bilayer thickness is accompanied by a decreased electrical conductivity (by a factor of four). The decreased conductivity is attributed to the increased monomer/CNT ratio.