Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Towards Bacteria Counting in DI Water of Several Microliters or Growing Suspension Using Impedance Biochips

2020, Kiani, Mahdi, Tannert, Astrid, Du, Nan, Hübner, Uwe, Skorupa, Ilona, Bürger, Danilo, Zhao, Xianyue, Blaschke, Daniel, Rebohle, Lars, Cherkouk, Charaf, Neugebauer, Ute, Schmidt, Oliver G., Schmidt, Heidemarie

We counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 109 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 109 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 109 cells/mL.

Loading...
Thumbnail Image
Item

Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy

2021, Pistiki, Aikaterini, Ramoji, Anuradha, Ryabchykov, Oleg, Thomas-Rueddel, Daniel, Press, Adrian T., Makarewicz, Oliwia, Giamarellos-Bourboulis, Evangelos J., Bauer, Michael, Bocklitz, Thomas, Popp, Juergen, Neugebauer, Ute

Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.